科目: 來源: 題型:
【題目】使得函數(shù)值為0的自變量的值稱為函數(shù)的零點(diǎn).例如,對于函數(shù)y=x﹣1,令y=0可得x=1,我們說1是函數(shù)y=x﹣1的零點(diǎn).已知函數(shù)y=x2﹣2mx﹣2(m+3)(m為常數(shù))
(1)當(dāng)m=0時,求該函數(shù)的零點(diǎn).
(2)證明:無論m取何值,該函數(shù)總有兩個零點(diǎn).
查看答案和解析>>
科目: 來源: 題型:
【題目】一個不透明的袋中裝有黃球、黑球和紅球共40個,它們除顏色外都相同,其中紅球有22個,且經(jīng)過試驗(yàn)發(fā)現(xiàn)摸出一個球?yàn)辄S球的頻率接近0.125 。
⑴求袋中有多少個黑球;
⑵現(xiàn)從袋中取出若干個黑球,并放入相同數(shù)量的黃球,攪拌均勻后使從袋中摸出一個球是黃球的概率達(dá)到,問至少取出了多少個黑球?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=25°,O為AB的中點(diǎn). 將OA繞點(diǎn)O逆時針旋轉(zhuǎn)θ °至OP(0<θ<180),當(dāng)△BCP恰為軸對稱圖形時,θ的值為_____________.
查看答案和解析>>
科目: 來源: 題型:
【題目】某屆世界杯的小組比賽規(guī)則:四個球隊(duì)進(jìn)行單循環(huán)比賽(每兩隊(duì)賽一場),勝一場得3分,平一場得1分,負(fù)一場得0分.某小組比賽結(jié)束后,甲、乙、丙、丁四隊(duì)分別獲得第一、二、三、四名,各隊(duì)的總得分恰好是四個連續(xù)奇數(shù),則與乙打平的球隊(duì)是( )
A. 甲 B. 甲與丁 C. 丙 D. 丙與丁
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,⊙A的圓心A的坐標(biāo)為(﹣1,0),半徑為1,點(diǎn)P為直線y=﹣x+3上的動點(diǎn),過點(diǎn)P作⊙A的切線,切點(diǎn)為Q,則切線長PQ的最小值是( 。
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖所示,在平面直角坐標(biāo)系xoy中,四邊形OABC是矩形,OA=4,OC=3,動點(diǎn)P從點(diǎn)C出發(fā),沿射線CB方向以每秒2個單位長度的速度運(yùn)動;同時,動點(diǎn)Q從點(diǎn)O出發(fā),沿x軸正半軸方向以每秒1個單位長度的速度運(yùn)動.設(shè)點(diǎn)P、點(diǎn)Q的運(yùn)動時間為t(s).
(1)當(dāng)t=1s時,求經(jīng)過點(diǎn)O,P,A三點(diǎn)的拋物線的解析式;
(2)當(dāng)t=2s時,求tan∠QPA的值;
(3)當(dāng)線段PQ與線段AB相交于點(diǎn)M,且BM=2AM時,求t(s)的值;
(4)連接CQ,當(dāng)點(diǎn)P,Q在運(yùn)動過程中,記△CQP與矩形OABC重疊部分的面積為S,求S與t的函數(shù)關(guān)系式.
查看答案和解析>>
科目: 來源: 題型:
【題目】問題提出:用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
問題探究:不妨假設(shè)能搭成m種不同的等腰三角形,為探究m與n之間的關(guān)系,我們可以從特殊入手,通過試驗(yàn)、觀察、類比,最后歸納、猜測得出結(jié)論.
探究一:
(1)用3根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?此時,顯然能搭成一種等腰三角形.所以,當(dāng)n=3時,m=1
(2)用4根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形,所以,當(dāng)n=4時,m=0
(3)用5根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形?若分為2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形,所以,當(dāng)n=5時,m=1
(4)用6根相同的木棒搭成一個三角形,能搭成多少種不同的三角形?若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形?若分為2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形,所以,當(dāng)n=6時,m=1
綜上所述,可得表①
n | 3 | 4 | 5 | 6 |
m | 1 | 0 | 1 | 1 |
探究二:
(1)用7根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三角形?(仿照上述探究方法,寫出解答過程,并把結(jié)果填在表②中)
(2)分別用8根、9根、10根相同的木棒搭成一個三角形,能搭成多少種不同的等腰三角形?(只需把結(jié)果填在表②中)
n | 7 | 8 | 9 | 10 |
m |
你不妨分別用11根、12根、13根、14根相同的木棒繼續(xù)進(jìn)行探究,…
解決問題:用n根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?
(設(shè)n分別等于4k﹣1、4k、4k+1、4k+2,其中k是整數(shù),把結(jié)果填在表 ③中)
n | 4k﹣1 | 4k | 4k+1 | 4k+2 |
m |
問題應(yīng)用:用2016根相同的木棒搭一個三角形(木棒無剩余),能搭成多少種不同的等腰三角形?(要求寫出解答過程)其中面積最大的等腰三角形每個腰用了 根木棒.(只填結(jié)果)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直角三角形ABC,點(diǎn)A的坐標(biāo)為(0,2),點(diǎn)B的坐標(biāo)為(0,﹣2),BC的長為3,反比例函數(shù)y=的圖象經(jīng)過點(diǎn)C.
(1)求反比例函數(shù)與直線AC的解析式;
(2)點(diǎn)P是反比例函數(shù)圖象上的點(diǎn),若使△OAP的面積恰好等于△ABC的面積,求P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點(diǎn),OD⊥AC,垂足為E,連接BD.
(1)求證:BD平分∠ABC;
(2) 當(dāng)∠ODB=30°時,求證:BC=OD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com