【題目】如圖,在△ABC中,AB=AC,∠BAC=30°,點(diǎn)D是△ABC內(nèi)一點(diǎn),DB=DC,∠DCB=30°,點(diǎn)E是BD延長線上一點(diǎn),AE=AB.
(1)求證:△ABD≌△ACD.
(2)求∠ADE的度數(shù).
(3)試猜想線段DE,AD,DC之間的數(shù)量關(guān)系,并證明你的結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知網(wǎng)格上最小的正方形的邊長為1.
(1)分別寫出A,B,C三點(diǎn)的坐標(biāo);
(2)作△ABC關(guān)于y軸的對稱圖形△A′B′C′(不寫作法),想一想:關(guān)于y軸對稱的兩個點(diǎn)之間有什么關(guān)系?
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形OABC的一邊OA在x軸上,將菱形OABC繞原點(diǎn)O順時針旋轉(zhuǎn)75°至OA’B’C’的位置.若OB=,∠C=120°,則點(diǎn)B’的坐標(biāo)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,以原點(diǎn)O為圓心的圓過點(diǎn)A(5,0),直線y=kx-2k+3(k≠0)與⊙O交于B、C兩點(diǎn),則弦BC的長的最小值為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A、B分別在x軸、y軸上,AB=12,∠OAB=30°,經(jīng)過A、B的直線l以每秒1個單位的速度向下作勻速平移運(yùn)動,與此同時,點(diǎn)P從點(diǎn)B出發(fā),在直線l上以每秒1個單位的速度沿直線l向右下方向作勻速運(yùn)動.設(shè)它們運(yùn)動的時間為t秒.
(1)直接寫出A、B點(diǎn)坐標(biāo)是A點(diǎn) ,B點(diǎn) ;
(2)用含t的代數(shù)式求出表示點(diǎn)P的坐標(biāo);
(3)過O作OC⊥l于C,過C作CD⊥x軸于D,問:t為何值時,以P為圓心、1為半徑的圓與直線OC相切?并寫出此時⊙P與直線CD的位置關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,的平分線和的外角平分線相交于點(diǎn),分別交和的延長線于,.過作交的延長線于點(diǎn),交的延長線于點(diǎn),連接交于點(diǎn).下列結(jié)論:①;②垂直平分;③;④;其中正確的結(jié)論有( )
A.4個B.3個C.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠A=90°,AC=AB,CD平分∠ACB,DE⊥BC于點(diǎn)E,若BC=15 cm,則△DEB的周長為( )
A.14 cmB.15 cm
C.16 cmD.17 cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某水果店銷售某種水果,原來每箱售價元,每星期可賣箱.為了促銷,該水果店決定降價銷售.市場調(diào)查反映:每降價元,每星期可多賣箱.已知該水果每箱的進(jìn)價是元,設(shè)該水果每箱售價元,每星期的銷售量為箱.
求與之間的函數(shù)關(guān)系式;
當(dāng)每箱售價定為多少元時,每星期的銷售利潤最大,最大利潤多少元?
若該水果店銷售這種水果每星期想要獲得不低于元的利潤,每星期至少要銷售該水果多少箱?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若拋物線L:y=ax2+bx+c(a,b,c是常數(shù),a≠0)的頂點(diǎn)P在直線l上,則稱該拋物線L與直線l具有“一帶一路關(guān)系”,此時,拋物線L叫做直線l的“帶線”,直線l叫做拋物線L的“路線”.
⑴求“帶線”L:y=x2﹣2mx+m2+m﹣1(m是常數(shù))的“路線”l的解析式;
⑵若某“帶線”L:y=x2+bx+c的頂點(diǎn)在二次函數(shù)y=x2+4x+1的圖象上,它的“路線”l的解析式為y=2x+4.
①求此“帶線”L的解析式;
②設(shè)“帶線”L與“路線”l的另一②個交點(diǎn)為Q,點(diǎn)R在PQ之間的“帶線”L上,當(dāng)點(diǎn)R到“路線”l的距離最大時,求點(diǎn)R的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com