【題目】如圖,直線y=kx+c與拋物線y=ax2+bx+c的圖象都經(jīng)過(guò)y軸上的D點(diǎn),拋物線與x軸交于A、B兩點(diǎn),其對(duì)稱軸為直線x=1,且OA=OD.直線y=kx+c與x軸交于點(diǎn)C(點(diǎn)C在點(diǎn)B的右側(cè)).則下列命題中正確命題的是( )
①abc>0; ②3a+b>0; ③﹣1<k<0; ④4a+2b+c<0; ⑤a+b<k.
A. ①②③ B. ②③⑤
C. ②④⑤ D. ②③④⑤
【答案】B
【解析】試題解析:∵拋物線開(kāi)口向上,
∴a>0.
∵拋物線對(duì)稱軸是x=1,
∴b<0且b=-2a.
∵拋物線與y軸交于正半軸,
∴c>0.
∴①abc>0錯(cuò)誤;
∵b=-2a,
∴3a+b=3a-2a=a>0,
∴②3a+b>0正確;
∵b=-2a,
∴4a+2b+c=4a-4a+c=c>0,
∴④4a+2b+c<0錯(cuò)誤;
∵直線y=kx+c經(jīng)過(guò)一、二、四象限,
∴k<0.
∵OA=OD,
∴點(diǎn)A的坐標(biāo)為(c,0).
直線y=kx+c當(dāng)x=c時(shí),y>0,
∴kc+c>0可得k>-1.
∴③-1<k<0正確;
∵直線y=kx+c與拋物線y=ax2+bx+c的圖象有兩個(gè)交點(diǎn),
∴ax2+bx+c=kx+c,
得x1=0,x2=
由圖象知x2>1,
∴>1
∴k>a+b,
∴⑤a+b<k正確,
即正確命題的是②③⑤.
故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,AB是⊙O的直徑,點(diǎn)C是中點(diǎn),∠COB=60°,過(guò)點(diǎn)C作CE⊥AD,交AD的延長(zhǎng)線于點(diǎn)E
(1)求證:CE為⊙O的切線;
(2)判斷四邊形AOCD是否為菱形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=-x2+x+4.
(1)確定拋物線的開(kāi)口方向、頂點(diǎn)坐標(biāo)和對(duì)稱軸;
(2)當(dāng)x取何值時(shí),y隨x的增大而增大?當(dāng)x取何值時(shí),y隨x的增大而減小?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,其中點(diǎn)A(5,4),B(1,3),將△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A1OB1.
(1)畫(huà)出△A1OB1;
(2)在旋轉(zhuǎn)過(guò)程中點(diǎn)B所經(jīng)過(guò)的路徑長(zhǎng)為 ;
(3)求在旋轉(zhuǎn)過(guò)程中線段AB、BO掃過(guò)的圖形的面積之和.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線經(jīng)過(guò)A(﹣4,0),B(0,﹣4),C(2,0)三點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)M為第三象限內(nèi)拋物線上一動(dòng)點(diǎn),點(diǎn)M的橫坐標(biāo)為m,△AMB的面積為S.求S關(guān)于m的函數(shù)關(guān)系式,并求出S的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將一塊腰長(zhǎng)為的等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,直角頂點(diǎn)C的坐標(biāo)為(,0),點(diǎn)B在拋物線上.
(1)點(diǎn)A的坐標(biāo)為 ,點(diǎn)B的坐標(biāo)為 ;
(2)拋物線的解析式為 ;
(3)設(shè)(2)中拋物線的頂點(diǎn)為D,求△DBC的面積;
(4)在拋物線上是否還存在點(diǎn)P(點(diǎn)B除外),使ΔACP仍然是以AC為直角邊的等腰直角三角形?若存在,請(qǐng)直接寫(xiě)出所有點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的外角∠ACD的平分線CP與內(nèi)角∠ABC平分線BP交于點(diǎn)P,若∠BPC=40°,則∠CAP= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com