【題目】在等邊三角形ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E、F分別是邊AB、AC(含線段AB、AC的端點(diǎn))上的動點(diǎn),且∠EDF=120°,小明和小慧對這個圖形展開如下研究:
問題初探:(1)如圖1,小明發(fā)現(xiàn):當(dāng)∠DEB=90°時,BE+CF=nAB,則n的值為 ;
問題再探:(2)如圖2,在點(diǎn)E、F的運(yùn)動過程中,小慧發(fā)現(xiàn)兩個有趣的結(jié)論:
①DE始終等于DF;②BE與CF的和始終不變;請你選擇其中一個結(jié)論加以證明.
成果運(yùn)用:(3)若邊長AB=8,在點(diǎn)E、F的運(yùn)動過程中,記四邊形DEAF的周長為L,L=DE+EA+AF+FD,則周長L 取最大值和最小值時E點(diǎn)的位置?
【答案】(1);(2)①見解析;②見解析;(3)周長L 取最大值時點(diǎn)E和點(diǎn)B重合或BE=4,取最小值時BE=2.
【解析】
(1)先利用等邊三角形判斷出BD=CD=AB,進(jìn)而判斷出BE=BD,再判斷出∠DFC=90°,得出CF=CD,即可得出結(jié)論;
(2)①構(gòu)造出△EDG≌△FDH(ASA),得出DE=DF,即可得出結(jié)論;
②由(1)知,BG+CH=AB,由①知,△EDG≌△FDH(ASA),得出EG=FH,即可得出結(jié)論;
(3)由(1)(2)判斷出L=2DE+12,再判斷出DE⊥AB時,L最小,點(diǎn)F和點(diǎn)C重合時,DE最大,即可得出結(jié)論.
解:(1)∵△ABC是等邊三角形,
∴∠B=∠C=60°,AB=BC,
∵點(diǎn)D是BC的中點(diǎn),
∴BD=CD=BC=AB,
∵∠DEB=90°,
∴∠BDE=90°-∠B=30°,
在Rt△BDE中,BE=BD,
∵∠EDF=120°,∠BDE=30°,
∴∠CDF=180°-∠BDE-∠EDF=30°,
∵∠C=60°,
∴∠DFC=90°,
在Rt△CFD中,CF=CD,
∴BE+CF=BD+CD=BC=AB,
∵BE+CF=nAB,
∴n=,
故答案為:;
(2)如圖,
①過點(diǎn)D作DG⊥AB于G,DH⊥AC于H,
∴∠DGB=∠AGD=∠CHD=∠AHD=90°,
∵△ABC是等邊三角形,
∴∠A=60°,
∴∠GDH=360°-∠AGD-∠AHD-∠A=120°,
∵∠EDF=120°,
∴∠EDG=∠FDH,
∵△ABC是等邊三角形,且D是BC的中點(diǎn),
∴∠BAD=∠CAD,
∵DG⊥AB,DH⊥AC,
∴DG=DH,
在△EDG和△FDH中,
,
∴△EDG≌△FDH(ASA),
∴DE=DF,
即:DE始終等于DF;
②同(1)的方法得,BG+CH=AB,
由①知,△EDG≌△FDH(ASA),
∴EG=FH,
∴BE+CF=BG-EG+CH+FH=BG+CH=AB,
∴BE與CF的和始終不變;
(3)由(2)知,DE=DF,BE+CF=AB,
∵AB=8,
∴BE+CF=4,
∴四邊形DEAF的周長為L=DE+EA+AF+FD
=DE+AB-BE+AC-CF+DF
=DE+AB-BE+AB-CF+DE
=2DE+2AB-(BE+CF)
=2DE+2×8-4
=2DE+12,
∴DE最大時,L最大,DE最小時,L最小,
當(dāng)DE⊥AB時,DE最小,L最小,
此時∠BDE=90°-60°=30°,
BE=BD=2,
當(dāng)點(diǎn)F和點(diǎn)C重合或點(diǎn)E和點(diǎn)B重合時,DE最大,點(diǎn)F和點(diǎn)C重合時,∠BDE=180°-∠EDF=120°=60°,
∵∠B=60°,
∴∠B=∠BDE=∠BED=60°,
∴△BDE是等邊三角形,
∴BE=DE=BD=AB=4,
當(dāng)點(diǎn)E和點(diǎn)B重合時,DE=BD=4,周長L 有最大值,
即周長L 取最大值時點(diǎn)E和點(diǎn)B重合或BE=4,取最小值時BE=2.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)的某種時令商品每件成本為20元,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種商品在未來40天內(nèi)的日銷售量m(件)與時間t(天)的關(guān)系滿足:m=﹣2t+96.且未來40天內(nèi),前20天每天的價格y1(元/件)與時間t(天)的函數(shù)關(guān)系式為y1=t+25(1≤t≤20且t為整數(shù)),后20天每天的價格y2(元/件)與時間t(天)的函數(shù)關(guān)系式為y2=﹣t+40(21≤t<40且t為整數(shù)).下面我們就來研究銷售這種商品的有關(guān)問題
(1)請分別寫出未來40天內(nèi),前20天和后20天的日銷售利潤w(元)與時間t的函數(shù)關(guān)系式;
(2)請預(yù)測未來40天中哪一天的日銷售利潤最大,最大日銷售利潤是多少?
(3)在實(shí)際銷售的前20天中,該公司決定每銷售一件商品就捐贈a元利潤(a<4)給希望工程.公司通過銷售記錄發(fā)現(xiàn),前20天中,每天扣除捐贈后的日銷售利潤隨時間t(天)的增大而增大,求a的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,D為BC邊上一個動點(diǎn)(D與B、C均不重合),AD=AE,∠DAE=60°,連接CE.
(1)求證:△ABD≌△ACE;
(2)求證:CE平分∠ACF;
(3)若AB=2,當(dāng)四邊形ADCE的周長取最小值時,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】凸四邊形的四個頂點(diǎn)滿足:每一個頂點(diǎn)到其他三個頂點(diǎn)距離之積都相等.則四邊形一定是( )
A. 正方形 B. 菱形 C. 等腰梯形 D. 矩形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,
(1)請你利用直尺和圓規(guī)完成如下操作:
①作△ABC的角平分線AD;
②作邊AB的垂直平分線EF,EF與AD相交于點(diǎn)P;
③連接PB,PC.
請你觀察圖形解答下列問題:
(2)線段PA,PB,PC之間的數(shù)量關(guān)系是 ;請說明理由.
(3)若∠ABC=70°,求∠BPC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級某班為準(zhǔn)備科技節(jié)表彰的獎品,計劃從友誼超市購買筆記本和水筆共40件,在獲知某網(wǎng)店有“五一”促銷活動后,決定從該網(wǎng)店購買這些獎品.已知筆記本和水筆在這兩家商店的零售價分別如下表,且在友誼超市購買這些獎品需花費(fèi)90元.
品名商店 | 筆記本(元/件) | 水筆(元/件) |
友誼超市 | 2.4 | 2 |
網(wǎng)店 | 2 | 1.8 |
(1)請求出需購買筆記本和水筆的數(shù)量;
(2)求從網(wǎng)店購買這些獎品可節(jié)省多少元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將沿著過中點(diǎn)的直線折疊,使點(diǎn)落在邊上的處,稱為第次操作,折痕到的距離記為,還原紙片后,再將沿著過中點(diǎn)的直線折疊,使點(diǎn)落在邊上的處,稱為第次操作,折痕到的距離記為;按上述方法不斷操作下去…,經(jīng)過第次操作后得到的折痕,到的距離記為;若,則的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD是高,AE、BF是角平分線,它們相交于點(diǎn)O,∠BAC=50°,∠C=70°,求∠DAC和∠BOA的度數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣1,5)、B(﹣1,0)、C(﹣4,3).
(1)請畫出△ABC關(guān)于y軸對稱的△DEF(其中D、E、F分別是A、B、C的對應(yīng)點(diǎn)).
(2)直接寫出(1)中F點(diǎn)的坐標(biāo)為 .
(3)若直線l經(jīng)過點(diǎn)(0,﹣2)且與x軸平行,則點(diǎn)C關(guān)于直線l的對稱點(diǎn)的坐標(biāo)為 .
(4)在y軸上存在一點(diǎn)P,使PC﹣PB最大,則點(diǎn)P的坐標(biāo)為 .
(5)第一象限有一點(diǎn)M(4,2),在x軸上找一點(diǎn)Q使CQ+MQ最短,畫出最短路徑,保留作圖痕跡.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com