【題目】如圖,在△ABC中,∠ACB=90°,CD是AB邊上的高,∠BAC的平分線AE交C于F,EG⊥AB于G,請(qǐng)判斷四邊形GECF的形狀,并證明你的結(jié)論.
【答案】四邊形GECF是菱形,理由詳見(jiàn)解析.
【解析】
試題根據(jù)全等三角形的判定定理HL進(jìn)行證明Rt△AEG≌Rt△AEC(HL),得到GE=EC;根據(jù)平行線EG∥CD的性質(zhì)、∠BAC平分線的性質(zhì)以及等量代換推知∠FEC=∠CFE,易證CF=CE;從而根據(jù)鄰邊相等的平行四邊形是菱形進(jìn)行判斷.
試題解析:四邊形GECF是菱形,理由如下:
∵∠ACB=90°,
∴AC⊥EC.
又∵EG⊥AB,AE是∠BAC的平分線,
∴GE=CE.
在Rt△AEG與Rt△AEC中,
,
∴Rt△AEG≌Rt△AEC(HL),
∴GE=EC,
∵CD是AB邊上的高,
∴CD⊥AB,
又∵EG⊥AB,
∴EG∥CD,
∴∠CFE=∠GEA,
∵Rt△AEG≌Rt△AEC,
∴∠GEA=∠CEA,
∴∠CEA=∠CFE,即∠CEF=∠CFE,
∴CE=CF,
∴GE=EC=FC,
又∵EG∥CD,即GE∥FC,
∴四邊形GECF是菱形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,四邊形OABC為矩形,點(diǎn)A,B的坐標(biāo)分別為(4,0),(4,3),動(dòng)點(diǎn)M,N分別從O,B同時(shí)出發(fā).以每秒1個(gè)單位的速度運(yùn)動(dòng).其中,點(diǎn)M沿OA向終點(diǎn)A運(yùn)動(dòng),點(diǎn)N沿BC向終點(diǎn)C運(yùn)動(dòng).過(guò)點(diǎn)M作MP⊥OA,交AC于P,連接NP,已知?jiǎng)狱c(diǎn)運(yùn)動(dòng)了x秒.
(1)求P點(diǎn)的坐標(biāo)(用含x的代數(shù)式表示);
(2)試求△NPC面積S的表達(dá)式,并求出面積S的最大值及相應(yīng)的x值;
(3)設(shè)四邊形OMPC的面積為S1,四邊形ABNP的面積為S2,請(qǐng)你就x的取值范圍討論S1與S2的大小關(guān)系并說(shuō)明理由;
(4)當(dāng)x為何值時(shí),△NPC是一個(gè)等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,對(duì)于一個(gè)圖形,通過(guò)2種不同的方法計(jì)算它的面積時(shí),可以得到一個(gè)數(shù)學(xué)等式.例如圖①可以得到,請(qǐng)解答下列問(wèn)題:
(1)寫(xiě)出圖②中所表示的等式: ;
(2)利用(1)中所得到的結(jié)論,解決下面的問(wèn)題:已知,,求的值;
(3)小明同學(xué)用2張邊長(zhǎng)為的正方形紙片、3張邊長(zhǎng)為的正方形紙片,5張邊長(zhǎng)分別為的長(zhǎng)方形紙片拼出了一個(gè)長(zhǎng)方形,那么該長(zhǎng)方形較長(zhǎng)一邊的長(zhǎng)為多少?
(4)小明同學(xué)又用張邊長(zhǎng)為的正方形紙片,張邊長(zhǎng)為的正方形紙片、張邊長(zhǎng)分別為的長(zhǎng)方形紙片拼出了一個(gè)面積為的長(zhǎng)方形,請(qǐng)問(wèn)一共用掉多少?gòu)埣埰?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,是邊上的中線,是的中點(diǎn),過(guò)點(diǎn)作的平行線與的延長(zhǎng)線相交于點(diǎn),連接.
(1)求證:四邊形為平行四邊形;
(2)若,請(qǐng)寫(xiě)出圖中所有與線段相等的線段(線段除外).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綠色生態(tài)農(nóng)場(chǎng)生產(chǎn)并銷售某種有機(jī)產(chǎn)品,假設(shè)生產(chǎn)出的產(chǎn)品能全部售出.如圖,線段EF、折線ABCD分別表示該有機(jī)產(chǎn)品每千克的銷售價(jià)y1(元)、生產(chǎn)成本y2(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系.
(1)求該產(chǎn)品銷售價(jià)y1(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系式;
(2)直接寫(xiě)出生產(chǎn)成本y2(元)與產(chǎn)量x(kg)之間的函數(shù)關(guān)系式;
(3)當(dāng)產(chǎn)量為多少時(shí),這種產(chǎn)品獲得的利潤(rùn)最大?最大利潤(rùn)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是用4個(gè)全等的直角三角形與1個(gè)小正方形鑲嵌而成的正方形圖案,已知大正方形面積為49,小正方形面積為4,若用,表示直角三角形的兩直角邊(),下列四個(gè)說(shuō)法:
①,②,③,④.
其中說(shuō)法正確的是 …………………………………………………………( )
A. ①② B. ①②③ C. ①②④ D. ①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,動(dòng)點(diǎn)P從點(diǎn)B出發(fā)沿射線BC以1cm/s的速度移動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
(1)求BC邊的長(zhǎng);
(2)當(dāng)△ABP為直角三角形時(shí),求t的值;
(3)當(dāng)△ABP為等腰三角形時(shí),求t的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A.B在反比例函數(shù)y=的圖象上,且點(diǎn)A,B的橫坐標(biāo)分別為a,2a(a<0),若S△AOB=3,則k的值為( 。
A.5B.-5C.4D.-4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我國(guó)是世界上嚴(yán)重缺水的國(guó)家之一.為了倡導(dǎo)“節(jié)約用水從我做起”,小剛在他所在班的50名同學(xué)中,隨機(jī)調(diào)查了10名同學(xué)家庭中一年的月均用水量(單位:t),并將調(diào)查結(jié)果繪成了如下的條形統(tǒng)計(jì)圖
【1】求這10個(gè)樣本數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);
【2】根據(jù)樣本數(shù)據(jù),估計(jì)小剛所在班50名同學(xué)家庭中月均用水量不超過(guò)7 t的約有多少戶.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com