△ABC在平面直角坐標系xOy中的位置如圖所示.
(1)作△ABC關于點C成中心對稱的△A1B1C1
(2)將△A1B1C1向右平移4個單位,作出平移后的△A2B2C2
(3)在x軸上求作一點P,使PA1+PC2的值最小,并寫出點P的坐標(不寫解答過程,直接寫出結果)
解;(1)如圖所示:

(2)如圖所示:

(3)如圖所示:作出A1關于x軸的對稱點A′,連接A′C2,交x軸于點P,
可得P點坐標為:(
8
3
,0).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在直角坐標系中,已知點P0的坐標為(1,0),將線段OP0按逆時針方向旋轉45°,將其長度伸長為OP0的2倍,得到線段OP1;再將線段OP1按逆時針方向旋轉45°,長度伸長為OP1的2倍,得到線段OP2;如此下去,得到線段OP3,OP4,…,OPn(n為正整數(shù))
(1)求點P6的坐標;
(2)求△P5OP6的面積;
(3)我們規(guī)定:把點Pn(xn,yn)(n=0,1,2,3,…)的橫坐標xn、縱坐標yn都取絕對值后得到的新坐標(|xn|,|yn|)稱之為點Pn的“絕對坐標”.根據(jù)圖中點Pn的分布規(guī)律,請你猜想點Pn的“絕對坐標”,并寫出來.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,平面直角坐標系中,△ABC為等邊三角形,其中點A、B、C的坐標分別為(-3,-1)、(-3,-3)、(-3+
3
,-2).現(xiàn)以y軸為對稱軸作△ABC的對稱圖形,得△A1B1C1,再以x軸為對稱軸作△A1B1C1的對稱圖形,得△A2B2C2
(1)直接寫出點C1、C2的坐標;
(2)能否通過一次旋轉將△ABC旋轉到△A2B2C2的位置?你若認為能,請作出肯定的回答,并直接寫出所旋轉的度數(shù);你若認為不能,請作出否定的回答(不必說明理由);
(3)設當△ABC的位置發(fā)生變化時,△A2B2C2、△A1B1C1與△ABC之間的對稱關系始終保持不變.
①當△ABC向上平移多少個單位時,△A1B1C1與△A2B2C2完全重合并直接寫出此時點C的坐標;
②將△ABC繞點A順時針旋轉α°(0≤α≤180),使△A1B1C1與△A2B2C2完全重合,此時α的值為多少點C的坐標又是什么?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,若正方形ABCD旋轉后能與正方形CDEF重合,那么圖形所在的平面內可作旋轉中心的點共有______個.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

已知:如圖,在等邊△ABC中取點P,使得PA,PB,PC的長分別為3,4,5,將線段AP以點A為旋轉中心順時針旋轉60°到線段AD,連接BD,下列結論:
①△ABD可以由△APC繞點A順時針旋轉60°得到;②點P與點D的距離為3;③∠APB=150°;④S△APC+S△APB=6+
9
4
3

其中正確的結論有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,如何作出該圖案繞O點按逆時針旋轉90°的圖形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

△ABC和△DCE是等邊三角形,則在此圖中,△ACE繞著______點逆時針方向旋轉______度可得到△______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

分析下圖①②④中陰影部分的分布規(guī)律,按此規(guī)律在圖③中畫出其陰影部分,在圖①中補圖使之成為軸對稱圖形,在圖②中補圖使之成為中心對稱圖形.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,請你畫出方格紙中的圖形關于點O的中心對稱圖形,并寫出整個圖形的對稱軸的條數(shù).

查看答案和解析>>

同步練習冊答案