【題目】甲、乙兩隊參加了端午情,龍舟韻賽龍舟比賽,兩隊在比賽時的路程(米)與時間(秒)之間的函數(shù)圖象如圖所示,請你根據圖象判斷,下列說法正確的是( 。

A. 乙隊率先到達終點

B. 甲隊比乙隊多走了

C. 秒時,兩隊所走路程相等

D. 從出發(fā)到秒的時間段內,乙隊的速度慢

【答案】C

【解析】

根據函數(shù)圖形,結合選項進行判斷,即可得到答案.

解:、由函數(shù)圖象可知,甲走完全程需要秒,乙走完全程需要秒,甲隊率先到達終點,本選項錯誤;

、由函數(shù)圖象可知,甲、乙兩隊都走了米,路程相同,本選項錯誤;

、由函數(shù)圖象可知,在秒時,兩隊所走路程相等,均為米,本選項正確;

、由函數(shù)圖象可知,從出發(fā)到秒的時間段內,甲隊的速度慢,本選項錯誤;

故選:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖是由大小相同的棱長為的小正方體搭成的幾何體,

請分別畫出它的從正面、左面、上面看到的形狀圖.

擺成如圖的形狀后,表面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,BC=4,面積是16,AC的垂直平分線EF分別交AC,AB邊于點E、F,若點DBC邊上的中點,點M為線段EF一動點,則CDM周長的最小值為(

A.4B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標中,點O是坐標原點,一次函數(shù)y1=kx+b與反比例函數(shù)y2=的圖象交于A(1,m)、B(n,1)兩點.

(1)求直線AB的解析式;

(2)根據圖象寫出當y1>y2時,x的取值范圍;

(3)若點Py軸上,求PA+PB的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等邊三角形的邊長為4,的中心,.繞點旋轉,分別交線段兩點,連接,給出下列四個結論:;;③四邊形的面積始終等于;④△周長的最小值為6,上述結論中正確的個數(shù)是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著信息技術的迅猛發(fā)展,人們去商場購物的支付方式更加多樣、便捷.某校數(shù)學興趣小組設計了一份調查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調查結果進行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請結合圖中所給的信息解答下列問題:

(1)這次活動共調查了   人;在扇形統(tǒng)計圖中,表示支付寶支付的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計圖補充完整.觀察此圖,支付方式的眾數(shù)   ”;

(3)在一次購物中,小明和小亮都想從微信”、“支付寶”、“銀行卡三種支付方式中選一種方式進行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(問題解決)

一節(jié)數(shù)學課上,老師提出了這樣一個問題:如圖1,點P是正方形ABCD內一點,PA=1,PB=2,PC=3.你能求出∠APB的度數(shù)嗎?

小明通過觀察、分析、思考,形成了如下思路:

思路一:將BPC繞點B逆時針旋轉90°,得到BP′A,連接PP′,求出∠APB的度數(shù);

思路二:將APB繞點B順時針旋轉90°,得到CP'B,連接PP′,求出∠APB的度數(shù).

請參考小明的思路,任選一種寫出完整的解答過程.

(類比探究)

如圖2,若點P是正方形ABCD外一點,PA=3,PB=1,PC=,求∠APB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠C90°.點OAB的中點,邊AC6,將邊長足夠大的三角板的直角頂點放在點O處,將三角板繞點0旋轉,始終保持三角板的直角邊與AC相交,交點為點E,另條直角邊與BC相交,交點為D,則等腰直角三角板的直角邊被三角板覆蓋部分的兩條線段CDCE的長度之和為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以AOB的頂點O為圓心,適當長為半徑畫弧,交OA于點C,交OB于點D.再分別以點C、D為圓心,大于CD的長為半徑畫弧,兩弧在AOB內部交于點E,過點E作射線OE,連CD.則下列說法錯誤的是

A.射線OEAOB的平分線

BCOD是等腰三角形

CC、D兩點關于OE所在直線對稱

DO、E兩點關于CD所在直線對稱

查看答案和解析>>

同步練習冊答案