【題目】我國政府從2007年起對職業(yè)中專在校生給予生活補貼,每位在校生每年補貼1500元某市預(yù)計2008年職業(yè)中專在校生人數(shù)是2007年的1.2倍,于是要在2007年的基礎(chǔ)上增加補貼600萬元。2008年該市職業(yè)中專在校生有多少萬人?補貼多少萬元?
【答案】2008年該市職業(yè)中專在校生有2.4萬人,補貼3600萬元.
【解析】試題分析:設(shè)2007職業(yè)中專的在校生為萬人.根據(jù)2008年職業(yè)中專在校生人數(shù)是2007年的1.2倍表示出2008年職業(yè)中專在校生人數(shù).再根據(jù)2008年要在2007年的基礎(chǔ)上增加投入600萬元列方程求解.
試題解析:設(shè)2007職業(yè)中專的在校生為x萬人,
根據(jù)題意得:1500×1.2x1500x=600,
解得:x=2,
所以2×1.2=2.4(萬人),2.4×1500=3600(萬元)
答:2008年該市職業(yè)中專在校生有2.4萬人,補貼3600萬元.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】資料:小球沿直線撞擊水平格檔反彈時(不考慮垂直撞擊),撞擊路線與水平格檔所成的銳角等于反彈路線與水平格檔所成的銳角.以圖(1)為例,如果黑球 沿從 到 方向在 點處撞擊 邊后將沿從 到 方向反彈,根據(jù)反彈原則可知 ,即 .如圖(2)和(3), 是一個長方形的彈子球臺面,有黑白兩球 和 ,小球沿直線撞擊各邊反彈時遵循資料中的反彈原則.(回答以下問題時將黑白兩球均看作幾何圖形中的點,不考慮其半徑大。
(1)探究(1):黑球 沿直線撞擊臺邊 哪一點時,可以使黑球 經(jīng)臺邊 反彈一次后撞擊到白球 ?請在圖(2)中畫出黑球 的路線圖,標(biāo)出撞擊點,并簡單證明所作路線是否符合反彈原則.
(2)探究(2):黑球 沿直線撞擊臺邊 哪一點時,可以使黑球 先撞擊臺邊 反彈一次后,再撞擊臺邊 反彈一次撞擊到白球 ?請在圖(3)中畫出黑球 的路線圖,標(biāo)出黑球撞擊 邊的撞擊點,簡單說明作法,不用證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 為的直徑, 為弦的中點,連接并延長交于點,過點作∥,交的延長線于點,連接, .
(1)求證: 是⊙的切線;
(2)若時,
①求圖中陰影部分的面積;
②以為原點, 所在的直線為軸,直徑的垂直平分線為軸,建立如圖所示的平面直角坐標(biāo)系,試在線段上求一點,使得直線把陰影部分的面積分成的兩部分.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2004年4月我國鐵路第5次大提速。假設(shè)Kl20次空調(diào)快速列車的平均速度提速后比提速前提高了44千米/時,提速前的列車時刻表如下:
行駛區(qū)間 | 車次 | 起始時刻 | 到站時刻 | 歷時 | 全程里程 |
A地—B地 | K120 | 2:00 | 6:00 | 4小時 | 264千米 |
請你根據(jù)題目提供的信息,填寫提速后的列車時刻表,并寫出計算過程。
行駛區(qū)間 | 車次 | 起始時刻 | 到站時刻 | 歷時 | 全程里程 |
A地—B地 | K120 | 2:00 | 264千米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某蓄水池的排水管每小時排水8m3,6小時可將滿池水全部排空.
(1)蓄水池的容積是____________ m3;
(2)如果增加排水管,使每小時排水量達(dá)到Q(m3),那么將滿池水排空所需時間為t(小時),則Q與t之間關(guān)系式為____________;
(3)如果準(zhǔn)備在5小時內(nèi)將滿池水排空,那么每小時的排水量至少為____________ m3/小時;
(4)已知排水管最多為每小時12m3,則至少____________小時可將滿池水全部排空.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)的圖象與反比例函數(shù)的圖象的兩個交點是A(-2,-4),C(4,n),與y軸交于點B,與x軸交于點D.
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)連結(jié)OA,OC,求△AOC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一次數(shù)學(xué)活動課上,張明用17個邊長為1的小正方形搭成了一個幾何體,然后他請王亮用其他同樣的小正方體在旁邊再搭一個幾何體,使王亮所搭幾何體恰好可以和張明所搭幾何體拼成一個無縫隙的大長方體(不改變張明所搭幾何體的形狀),那么王亮至少還需要 個小立方體,王亮所搭幾何體的表面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知CD是經(jīng)過∠BCA頂點C的一條直線,CA=CB.E、F分別是直線CD上兩點,且∠BEC=∠CFA=∠.
(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E、F在射線CD上,請解決下面問題:
①如圖1若∠BCA=90°,∠=90°、探索三條線段EF、BE、AF的數(shù)量關(guān)系并證明你的結(jié)論.
②如圖2,若0°<∠BCA<180°, 請?zhí)砑右粋關(guān)于∠與∠BCA關(guān)系的條件___ ____使①中的結(jié)論仍然成立;
(2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠=∠BCA,請寫出三條線段EF、BE、AF的數(shù)量關(guān)系并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com