【題目】如圖,已知矩形 OABC,以點(diǎn) O 為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,其中 A(2,0), C(0,3),點(diǎn) P 以每秒 1 個(gè)單位的速度從點(diǎn) C 出發(fā)在射線 CO 上運(yùn)動(dòng),連接 BP,作 BE⊥PB 交 x 軸于點(diǎn) E,連接 PE 交 AB 于點(diǎn) F,設(shè)運(yùn)動(dòng)時(shí)間為 t 秒.
(1)當(dāng) t=2 時(shí),求點(diǎn) E 的坐標(biāo);
(2)在運(yùn)動(dòng)的過(guò)程中,是否存在以 P、O、E 為頂點(diǎn)的三角形與△PCB 相似.若存在,請(qǐng)求出點(diǎn) P 的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)(5,0);(2)存在.
【解析】
(1)本題需先求出AB=AE,再求出DE=5,即可求出點(diǎn)E的坐標(biāo).
(2)本題需先求出CP=CB=2,即可求出t的值.(3)本題需先證出△BCP~△BAE,求出
AE= t,再證出△POE~△PCB,求出的t值,再求出OP的長(zhǎng),即可求出P的坐標(biāo).
解:(1)當(dāng) t=2 時(shí),PC=2,∵BC=2,∴PC=BC,∴∠PBC=45°,∴∠BAE=90°,
∴∠AEB=45°,∴AB=AE=3,OE=5,∴點(diǎn) E 的坐標(biāo)是(5,0);
(2)存在,
∵∠ABE+∠ABP=90°
∠PBC+∠ABP=90°
∴∠ABE=∠PBC
∵∠BAE=∠BCP=90°
∴△POE△BAE
∴=
∴=
∴AE=t
∵若△POE△PCB
∴
∴=
,(舍去)
∴P的坐標(biāo)為(0,).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,一個(gè)長(zhǎng)為,寬為的長(zhǎng)方形,沿途中的虛線用剪刀均勻的分成四個(gè)小長(zhǎng)方形,然后按圖②的形狀拼成一個(gè)正方形.
(1)觀察圖②,請(qǐng)用兩種不同的方法求圖②中陰影部分的面積.
方法1:________________________________________(只列式,不化簡(jiǎn))
方法2:________________________________________(只列式,不化簡(jiǎn))
(2)請(qǐng)寫出三個(gè)式子之間的等量關(guān)系:_______________________________.
(3)根據(jù)(2)題中的等量關(guān)系,解決如下問(wèn)題:若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在長(zhǎng)方形ABCD中,AB=12cm,BC=10cm,點(diǎn)P從A出發(fā),沿A→B→C→D的路線運(yùn)動(dòng),到D停止;點(diǎn)Q從D點(diǎn)出發(fā),沿D→C→B→A路線運(yùn)動(dòng),到A點(diǎn)停止.若P、Q兩點(diǎn)同時(shí)出發(fā),速度分別為每秒lcm、2cm,a秒時(shí)P、Q兩點(diǎn)同時(shí)改變速度,分別變?yōu)槊棵?/span>2cm、cm(P、Q兩點(diǎn)速度改變后一直保持此速度,直到停止),如圖2是△APD的面積s(cm2)和運(yùn)動(dòng)時(shí)間x(秒)的圖象.
(1)求出a值;
(2)設(shè)點(diǎn)P已行的路程為y1(cm),點(diǎn)Q還剩的路程為y2(cm),請(qǐng)分別求出改變速度后,y1、y2和運(yùn)動(dòng)時(shí)間x(秒)的關(guān)系式;
(3)求P、Q兩點(diǎn)都在BC邊上,x為何值時(shí)P、Q兩點(diǎn)相距3cm?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程。
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)若△ABC的兩邊AB、AC的長(zhǎng)是方程的兩個(gè)實(shí)數(shù)根,第三邊BC的長(zhǎng)為5。當(dāng)△ABC是等腰三角形時(shí),求k的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=kx+2與x軸、y軸分別交于A、B兩點(diǎn),OA:OB=.以線段AB為邊在第二象限內(nèi)作等腰Rt△ABC,∠BAC=90°.
(1)求點(diǎn)A的坐標(biāo)和k的值;
(2)求點(diǎn)C坐標(biāo);
(3)直線y=x在第一象限內(nèi)的圖象上是否存在點(diǎn)P,使得△ABP的面積與△ABC的面積相等?如果存在,求出點(diǎn)P坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖所示,在中,過(guò),作的垂線垂足為,,過(guò),作的垂線,垂足為,(,不垂直).
(1)試說(shuō)明:四邊形;
(2)四邊形與是不是位似圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一張三角形紙片如圖甲,其中將紙片沿過(guò)點(diǎn)B的直線折疊,使點(diǎn)C落到AB邊上的E點(diǎn)處,折痕為如圖乙再將紙片沿過(guò)點(diǎn)E的直線折疊,點(diǎn)A恰好與點(diǎn)D重合,折痕為如圖丙原三角形紙片ABC中,的大小為______
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一架外國(guó)偵察機(jī)沿方向侵入我國(guó)領(lǐng)空進(jìn)行非法偵察,我空軍的戰(zhàn)斗機(jī)沿方向與外國(guó)偵察機(jī)平行飛行,進(jìn)行跟蹤監(jiān)視,我機(jī)在處與外國(guó)偵察機(jī)處的距離為米,為,這時(shí)外國(guó)偵察機(jī)突然轉(zhuǎn)向,以偏左的方向飛行,我機(jī)繼續(xù)沿方向以米/秒的速度飛行,外國(guó)偵察機(jī)在點(diǎn)故意撞擊我戰(zhàn)斗機(jī),使我戰(zhàn)斗機(jī)受損.問(wèn)外國(guó)偵察機(jī)由到的速度是多少?(結(jié)果保留整數(shù),參考數(shù)據(jù),)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與直線都經(jīng)過(guò)坐標(biāo)軸的正半軸上A(4,0),B兩點(diǎn),該拋物線的對(duì)稱軸x=﹣1,與x軸交于點(diǎn)C,且∠ABC=90°,求:
(1)直線AB的解析式;
(2)拋物線的解析式.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com