【題目】一架外國(guó)偵察機(jī)沿方向侵入我國(guó)領(lǐng)空進(jìn)行非法偵察,我空軍的戰(zhàn)斗機(jī)沿方向與外國(guó)偵察機(jī)平行飛行,進(jìn)行跟蹤監(jiān)視,我機(jī)在處與外國(guó)偵察機(jī)處的距離為米,為,這時(shí)外國(guó)偵察機(jī)突然轉(zhuǎn)向,以偏左的方向飛行,我機(jī)繼續(xù)沿方向以米/秒的速度飛行,外國(guó)偵察機(jī)在點(diǎn)故意撞擊我戰(zhàn)斗機(jī),使我戰(zhàn)斗機(jī)受損.問(wèn)外國(guó)偵察機(jī)由到的速度是多少?(結(jié)果保留整數(shù),參考數(shù)據(jù),)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)為,點(diǎn)的坐標(biāo)是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形 OABC,以點(diǎn) O 為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系,其中 A(2,0), C(0,3),點(diǎn) P 以每秒 1 個(gè)單位的速度從點(diǎn) C 出發(fā)在射線 CO 上運(yùn)動(dòng),連接 BP,作 BE⊥PB 交 x 軸于點(diǎn) E,連接 PE 交 AB 于點(diǎn) F,設(shè)運(yùn)動(dòng)時(shí)間為 t 秒.
(1)當(dāng) t=2 時(shí),求點(diǎn) E 的坐標(biāo);
(2)在運(yùn)動(dòng)的過(guò)程中,是否存在以 P、O、E 為頂點(diǎn)的三角形與△PCB 相似.若存在,請(qǐng)求出點(diǎn) P 的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,,,是的兩條角平分線,且,交于點(diǎn).
(1)如圖1,用等式表示,,這三條線段之間的數(shù)量關(guān)系,并證明你的結(jié)論;
小東通過(guò)觀察、實(shí)驗(yàn),提出猜想:.他發(fā)現(xiàn)先在上截取,使,連接,再利用三角形全等的判定和性質(zhì)證明即可.
①下面是小東證明該猜想的部分思路,請(qǐng)補(bǔ)充完整:
ⅰ)在上截取,使,連接,則可以證明與 全等,判定它們?nèi)鹊囊罁?jù)是 ;
ⅱ)由,,是的兩條角平分線,可以得出 °;
②請(qǐng)直接利用ⅰ),ⅱ)已得到的結(jié)論,完成證明猜想的過(guò)程.
(2)如圖2,若 ,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“低碳生活,綠色出行”是我們倡導(dǎo)的一種生活方式,有關(guān)部門調(diào)查了某單位員工上下班的交通方式,繪制了如下統(tǒng)計(jì)圖:
(1)填空:本次調(diào)查的總?cè)藬?shù)為 人,開(kāi)私家車的人數(shù)m= ,扇形統(tǒng)計(jì)圖中“騎自行車”所在扇形的圓心角為 度;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該單位共有2000人,請(qǐng)估算該單位騎自行車上下班的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直徑為1000毫米的圓柱形油罐內(nèi)裝進(jìn)一些油.其橫截面如圖.油面寬AB=600毫米.
(1)求油的最大深度;
(2)如果再注入一些油后,油面寬變?yōu)?/span>800毫米,此時(shí)油面上升了多少毫米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)的圖象與軸交于點(diǎn)、,且,與軸的正半軸的交點(diǎn)在的下方.下列結(jié)論:①;②;③;④.其中正確結(jié)論的個(gè)數(shù)是( )個(gè).
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:為的直徑,為延長(zhǎng)線上的任意一點(diǎn),過(guò)點(diǎn)作的切線,切點(diǎn)為,的平分線與交于點(diǎn).
(1)如圖,若恰好等于,求的度數(shù);
(2)如圖,若點(diǎn)位于中不同的位置,的結(jié)論是否仍然成立?說(shuō)明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是8×8的正方形網(wǎng)格,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:
(1)在網(wǎng)格中建立平面直角坐標(biāo)系,使點(diǎn)A的坐標(biāo)為(﹣2,4),點(diǎn)B的坐標(biāo)為(﹣4,2);
(2)在第二象限內(nèi)的格點(diǎn)上畫一點(diǎn)C,連接AC,BC,使△BC成為以AB為底的等腰三角形,且腰長(zhǎng)是無(wú)理數(shù).
①此時(shí)點(diǎn)C的坐標(biāo)為 ,△ABC的周長(zhǎng)為 (結(jié)果保留根號(hào));
②畫出△ABC關(guān)于y軸對(duì)稱的△A′B'C′(點(diǎn)A,B,C的對(duì)應(yīng)點(diǎn)分別A',B',C′),并寫出A′,B′,C′的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com