【題目】拋物線y=ax2+bx+c(a≠0)的圖象如圖,則下列結(jié)論中正確的是( 。
A.ab<0B.a+b+2c﹣2>0C.b2﹣4ac<0D.2a﹣b>0
【答案】D
【解析】
利用拋物線開口方向得到a>0,利用拋物線的對稱軸在y軸的左側(cè)得到b>0,則可對A選項進行判斷;利用x=1時,y=2得到a+b=2﹣c,則a+b+2c﹣2=c<0,于是可對B選項進行判斷;利用拋物線與x軸有2個交點可對C選項進行判斷;利用﹣1<﹣<0可對D選項進行判斷.
∵拋物線開口向上,
∴a>0,
∵拋物線的對稱軸在y軸的左側(cè),
∴a、b同號,即b>0,
∴ab>0,故A選項錯誤;
∵拋物線與y軸的交點在x軸下方,
∴c<0,
∵x=1時,y=2,
∴a+b+c=2,
∴a+b+2c﹣2=2+c﹣2=c<0,故B選項錯誤;
∵拋物線與x軸有2個交點,
∴△=b2﹣4ac>0,故 C選項錯誤;
∵﹣1<﹣<0,
而a>0,
∴﹣2a<﹣b,即2a﹣b>0,所以D選項正確.
故選:D.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D是以點A為圓心2為半徑的圓上一點,連接BD,M為BD的中點,則線段CM長度的最小值為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,以AB邊為直徑的⊙O經(jīng)過點P,C是⊙O上一點,連結(jié)PC交AB于點E,且∠ACP=60°,PA=PD.
(1)試判斷PD與⊙O的位置關(guān)系,并說明理由;
(2)若點C是弧AB的中點,已知AB=4,求CECP的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了了解今年九年級學生的數(shù)學學習情況,在中考考前適應性訓練測試后,對九年級全體同學的數(shù)學成績作了統(tǒng)計分析,按照成績高低分為A、B、C、D四個等級并繪制了如圖1和圖2的統(tǒng)計圖(均不完整),請結(jié)合圖中所給出的信息解答問題:
(1)該校九年級學生共有 人.
(2)補全條形統(tǒng)計圖與扇形統(tǒng)計圖.(要求:請將扇形統(tǒng)計圖的空白部分按比例分成兩部分.)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2018年10月21日,重慶市第八屆中小學藝術(shù)工作坊在渝北區(qū)空港新城小學體育館開幕,來自全重慶市各個區(qū)縣共二十多個工作坊集中展示了自己的藝術(shù)特色.組委會準備為現(xiàn)場展示的參賽選手購買三種紀念品,其中甲紀念品5元/件,乙紀念品7元/件,丙紀念品10元/件.要求購買乙紀念品數(shù)量是丙紀念品數(shù)量的2倍,總費用為346元.若使購買的紀念品總數(shù)最多,則應購買紀念品共_____件.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AD∥BC,直線EF是⊙O的切線,B是切點.若∠C=80°,∠ADB=54°,則∠CBF=____°.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點H,點F是上一點,連接AF交CD的延長線于點E.
(1)求證:△AFC∽△ACE;
(2)若AC=5,DC=6,當點F為的中點時,求AF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A(1,m2)、點B(2,m﹣1)是函數(shù)y=(其中x>0)圖象上的兩點.
(1)求點A、點B的坐標及函數(shù)的解析式;
(2)連接OA、OB、AB,求△AOB的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com