【題目】如圖,一次函數(shù)y=ax+b的圖像與正比例函數(shù)y=kx的圖像交于點M,
(1)求正比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖像寫出使正比例函數(shù)的值大于一次函數(shù)的值的x的取值范圍;
(3)求ΔMOP的面積。
【答案】(1)一次函數(shù)表達式為: y=2x-2;正比例函數(shù)為 y=x;(2)x<2;(3)1.
【解析】∵y=ax+b經(jīng)過(1,0)和(0,-2)
∴…………………………………………………1分
解得:k=2 b=-2…………………………………………..2分
一次函數(shù)表達式為: y=2x-2…………………………………3分
∵點M在該一次函數(shù)上,∴m=2 x 2-2=2
M點坐標為(2,2)……………………………………………4分
又∵M在函數(shù) y=kx上,∴ k=m/2=2/2=1
∴正比例函數(shù)為 y=x…………………………………………..5分
(2)由圖像可知,當x=2時,一次函數(shù)與正比例函數(shù)相交;x<2時,正比例函數(shù)圖像在一次函數(shù)上方,故:
x<2時,x>2x-2………………………………………………….7分
(3)作MN垂直X軸,易知MN=2
∴故SΔMOP=1/2 x 1 x 2=1
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長為( 。
A.42 B.32 C.42 或 32 D.37 或 33
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某工廠設計了一款工藝品,每件成本元,為了合理定價,現(xiàn)投放市場進行試銷.據(jù)市場調(diào)查,銷售單價是元時,每天的銷售量是件,若銷售單價每降低元,每天就可多售出件,但要求銷售單價不得低于元.如果降價后銷售這款工藝品每天能盈利元,那么此時銷售單價為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電子廠商投產(chǎn)一種新型電子產(chǎn)品,每件制造成本為18元,試銷過程中發(fā)現(xiàn),每月銷售量(萬件)與銷售單價(元)之間的關系可以近似地看作一次函數(shù)(利潤=售價﹣制造成本)
(1)寫出每月的利潤(萬元)與銷售單價(元)之間的函數(shù)關系式;
(2)根據(jù)相關部門規(guī)定,這種電子產(chǎn)品的銷售單價不能高于40元,如果廠商每月的制造成本不超過540萬元,那么當銷售單價為多少元時,廠商每月獲得的利潤最大?最大利潤為多少萬元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某鋼鐵企業(yè)為了適應市場競爭的需要,提高生產(chǎn)效率,決定將一部分鋼鐵生產(chǎn)一線員工調(diào)整去從事服務工作,該企業(yè)有鋼鐵生產(chǎn)一線員工1000人,平均每人可創(chuàng)造年產(chǎn)值30萬元,根據(jù)規(guī)劃,調(diào)整出去的一部分一線員工后,余下的生產(chǎn)一線員工平均每人全年創(chuàng)造年產(chǎn)值可增加30%,調(diào)整到服務性工作崗位人員平均每人全年可創(chuàng)造產(chǎn)值24萬元,如果要保證員工崗位調(diào)整后,現(xiàn)在全年總產(chǎn)值至少增加20%,且鋼鐵產(chǎn)品的產(chǎn)值不能超過33150萬元,怎樣安排調(diào)整到服務行業(yè)的人數(shù)?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象經(jīng)過原點及點(,),且圖象與x軸的另一交點到原點的距離為1,則該二次函數(shù)解析式為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖,在直角三角形ABC中,∠ACB=900,D是AB上一點,且∠ACD=∠B
(1)判斷△ACD的形狀?并說明理由。
(2)你在證明你的結論過程中應用了哪一對互逆的真命題?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com