【題目】如圖①,點(diǎn)D為一等腰直角三角形紙片的斜邊AB的中點(diǎn),EBC邊上的一點(diǎn),將這張紙片沿DE翻折成如圖②,使BEAC邊相交于點(diǎn)F,若圖①中AB,則圖②中CEF的周長為______

【答案】2

【解析】

DMACM,DHBCH,DNEBN,連接DF.首先證明△DFB≌△DFC,推出CF=BF,推出△EFC的周長=EF+CF+EC=(EF+FB)+EC=EB+EC=CB′,由此即可解決問題.

如圖,作DMACM,DHBCH,DNEBN,連接DF

CA=CB,∠ACB=90°,AD=BD

CD=DB=AD=DB,∠DCB=DCA=45°,∠B=B=DCA=45°.

DH=DM=DN,

∴∠DFM=DFN

∵∠BFM=EFC,

∴∠DFB=DFC,

在△DFB和△DFC中,

∴△DFB≌△DFC,

CF=BF,

∵△EFC的周長=EF+CF+EC=(EF+FB)+EC=EB+EC=CB′,

AB=,

CB=ABcos45°=×=2,

故答案為:2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB90°,AD平分∠BAC,DEABE

1)若∠DEC25°,求∠B的度數(shù);

2)求證:直線AD是線段CE的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,已知ADBC,AB=CD,延長線段CB到E,使BE=AD,連接AE、AC.

1求證:ABE≌△CDA;

2DAC=40°,求EAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場試銷一種成本為每件60元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于45%,經(jīng)試銷發(fā)現(xiàn),銷售量y(件)與銷售單價(jià)x(元)符合一次函數(shù)y=kx+b,且x=65時(shí),y=55;x=75時(shí),y=45

1)求一次函數(shù)y=kx+b的表達(dá)式;

2)若該商場獲得利潤為W元,試寫出利潤W與銷售單價(jià)x之間的關(guān)系式;銷售單價(jià)定為多少元時(shí),商場可獲得最大利潤,最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點(diǎn)DE分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)MP,N分別為DE,DCBC的中點(diǎn).

(1)觀察猜想

1中,線段PMPN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;

(2)探究證明

ADE繞點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說明理由;

(3)拓展延伸

ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC,∠C=90°,ACBC,若DBC上一點(diǎn),且到A,B兩點(diǎn)距離相等.

1)利用尺規(guī),作出點(diǎn)D的位置(不寫作法,保留作圖痕跡);

2)連結(jié)AD,若AB=5AC=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列一段話,并解決后面的問題 .觀察下面一例數(shù):

1,2,4,8,……

我們發(fā)現(xiàn),這一列數(shù)從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的比都等于2 .

一般地,如果一列數(shù)從第2項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的比都等于同一個(gè)常數(shù),這一列數(shù)就叫做等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的公比 .

1)等比數(shù)列5,-1545,……的第4項(xiàng)是 ;

2)如果一列數(shù),,,……是等比數(shù)列,且公比為q,那么根據(jù)上述的規(guī)定,有

,,,……

所以,

,

,

……

.(用q的代數(shù)式表示)

3)一個(gè)等比數(shù)列的第2項(xiàng)是10,第3項(xiàng)是20,求它的第1項(xiàng)與第4項(xiàng) .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在四邊形ABCD中,∠A90°.若AB4cm,AD3cmCD12cm,BC13cm

1)請(qǐng)說明BDCD;

2)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知是正方形內(nèi)一點(diǎn),以點(diǎn)為旋轉(zhuǎn)中心,將按順時(shí)針方向旋轉(zhuǎn)使點(diǎn)與點(diǎn)重合,這時(shí)點(diǎn)旋轉(zhuǎn)到點(diǎn).

設(shè)的長為,的長為,在圖中用陰影標(biāo)出旋轉(zhuǎn)到的過程中,邊所掃過區(qū)域的面積,并用含、的式子表示它________;

,,連接,試猜想的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案