【題目】在某超市小明買了1千克甲種糖果和2千克乙種糖果,共付38元;小強買了2千克甲種糖果和0.5千克乙種糖果,共付27元.

(1)求該超市甲、乙兩種糖果每千克各需多少元?

(2)某顧客到該超市購買甲、乙兩種糖果共20千克混合,欲使總價不超過240元,問該顧客混合的糖果中甲種糖果最少多少千克?

【答案】(1)超市甲種糖果每千克需10元,乙種糖果每千克需14元;(2)該顧客混合的糖果中甲種糖果最少10千克.

【解析】(1)設超市甲種糖果每千克需x元,乙種糖果每千克需y元,

依題意得:,(2分)

解得.(3分)

答:超市甲種糖果每千克需10元,乙種糖果每千克需14元;

(2)設購買甲種糖果a千克,則購買乙種糖果(20﹣a)千克,

依題意得:10a+14(20﹣a)≤240,(6分)

解得a≥10,

即a最小值=10.(7分)

答:該顧客混合的糖果中甲種糖果最少10千克.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】某公園的門票價格如下表所示:

某校九年級甲、乙兩個班共100多人去該公園舉行畢業(yè)聯(lián)歡活動,其中甲班有50多人,乙班不足50人,如果以班為單位分別買門票,兩個班一共應付920元;如果兩個班聯(lián)合起來作為一個團體購票,一共要付515元,問甲、乙兩班分別有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,EABCD的邊CD的中點,延長AEBC的延長線于點F.

(1)求證:ADE≌△FCE.

(2)若∠BAF=90°,BC=5,EF=3,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在亞丁灣一海域執(zhí)行護航任務的我海軍某軍艦由東向西行駛.在航行到B處時,發(fā)現(xiàn)燈塔A在我軍艦的正北方向500米處;當該軍艦從B處向正西方向行駛至達C處時,發(fā)現(xiàn)燈塔A在我軍艦的北偏東60°的方向.求該軍艦行駛的路程.(計算過程和結(jié)果均不取近似值)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,DE∥BF∠1與∠2互補.

1)試說明:FG∥AB;

2)若∠CFG=60°,∠2=150°,則DEAC垂直嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】xy能得到mxmy,則( 。

A.m0B.m0C.m0D.m0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】不等式2x11的解集是____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知n(n≥3,且n為整數(shù))條直線中只有兩條直線平行,且任何三條直線都不交于同一個點.如圖,當n=3時,共有2個交點;當n=4時,共有5個交點;當n=5時,共有9個交點;依此規(guī)律,當共有交點個數(shù)為27時,則n的值為( 。

A. 6 B. 7 C. 8 D. 9

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們給出如下定義:順次連接任意一個四邊形各邊中點所得的四邊形叫中點四邊形.

(1如圖1,四邊形ABCD中,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點.求證:中點四邊形EFGH是平行四邊形;

(2如圖2,點P是四邊形ABCD內(nèi)一點,且滿足PA=PB,PC=PD,∠APB=∠CPD,點E,F(xiàn),G,H分別為邊AB,BC,CD,DA的中點,猜想中點四邊形EFGH的形狀,并證明你的猜想;

(3若改變(2中的條件,使∠APB=∠CPD=90°,其他條件不變,直接寫出中點四邊形EFGH的形狀.(不必證明

查看答案和解析>>

同步練習冊答案