【題目】計算

(1)﹣22×7﹣(﹣3)×6+5;

(2)化簡3(m﹣2n+2)﹣(﹣2m﹣3n)﹣1;

(3)解方程:2(2x+1)﹣(10x+1)=6;

(4)=2.

【答案】(1)19;(2)5m﹣3n+5;(3)x=﹣;(4)x=2.

【解析】

(1)根據(jù)有理數(shù)的混合運算,可得答案;
(2)根據(jù)去括號、合并同類項,可得答案;
(3)根據(jù)解一元一次方程的一般步驟,可得答案;
(4)根據(jù)解一元一次方程的一般步驟,可得答案.

(1)原式=4+18+5=19;

(2)原式=3m6n+6+2m+3n1=5m3n+5;

(3)去括號,得,

4x+210x1=6,

移項,合并同類項,得,

6x=5,

系數(shù)化為1,得,

(4)去分母,3(x+3)(2x1)=12,

去括號,得3x+92x+1=12,

移項,得3x2x=1291,

合并同類項,得x=2.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點,連接DE、BF、BD.

(1)求證:△ADE≌△CBF ;

(2)當ADBD時,請你判斷四邊形BFDE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC是等腰直角三角形,AB=,把△ABC沿直線BC向右平移得到△DEF.如果E是BC的中點,AC與DE交于P點,以直線BC為x軸,點E為原點建立直角坐標系.

(1)求△ABC與△DEF的頂點坐標;

(2)判斷△PEC的形狀;

(3)求△PEC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】表示的是某綜合商場今年15月的商品各月銷售總額的情況,圖表示的是商場服裝部各月銷售額占商場當月銷售總額的百分比情況,觀察圖、圖,解答下列問題:

(1)來自商場財務(wù)部的數(shù)據(jù)報告表明,商場15月的商品銷售總額一共是410萬元,請你根據(jù)這一信息將圖中的統(tǒng)計圖補充完整;

(2)商場服裝部5月份的銷售額是多少萬元?

(3)小剛觀察圖后認為,5月份商場服裝部的銷售額比4月份減少了.你同意他的看法嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在一個不透明的箱子里,裝有黃、白、黑各一個球,它們除了顏色之外沒有其他區(qū)別.
(1)隨機從箱子里取出1個球,則取出黃球的概率是多少?
(2)隨機從箱子里取出1個球,放回攪勻再取第二個球,請你用畫樹狀圖或列表的方法表示出所有可能出現(xiàn)的結(jié)果,并求兩次取出的都是白色球的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2x+=0有實數(shù)根,k為正整數(shù).
(1)求k的值;
(2)當此方程有兩個非零的整數(shù)根時,將關(guān)于x的二次函數(shù)y=x2+2x+的圖象向下平移9個單位,求平移后的圖象的表達式;
(3)在(2)的條件下,平移后的二次函數(shù)的圖象與x軸交于點A,B(點A在點B左側(cè)),直線y=kx+b(k>0)過點B,且與拋物線的另一個交點為C,直線BC上方的拋物線與線段BC組成新的圖象,當此新圖象的最小值大于﹣5時,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校舉行全體學生漢字聽寫比賽,每位學生聽寫漢字39個.現(xiàn)隨機抽取了部分學生的聽寫結(jié)果,繪制成如下的圖表:

組別

正確字數(shù)x

人數(shù)

A

0≤x<8

10

B

8≤x<16

15

C

16≤x<24

25

D

24≤x<32

M

E

32≤x<40

n

根據(jù)以上信息完成下列問題:

(1)統(tǒng)計表中的m=   ,n=   ,并補全條形統(tǒng)計圖.

(2)扇形統(tǒng)計圖中“C所對應(yīng)的圓心角的度數(shù)是   

(3)已知該校共有900名學生,如果聽寫正確的字的個數(shù)少于16個定為不合格,請你估計該校本次聽寫比賽不合格的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線 分別交x軸、y軸于A、B兩點,線段AB的垂直平分線分別交x軸、y軸于C、D兩點.

(1)求點C的坐標;
(2)求△BCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E、F是對角線AC上的兩點,∠1=2.

(1)求證:AE=CF;

(2)求證:四邊形EBFD是平行四邊形.

查看答案和解析>>

同步練習冊答案