【題目】如圖,在□ABCD中,AD=2AB,F是AD的中點,作CE⊥AB,垂足E在線段AB上(E不與A、B重合),連接EF、CF,則下列結(jié)論中一定成立的是 ( )
①∠DCF=∠BCD;②EF=CF;③;④∠DFE=4∠AEF.
A. ①②③④ B. ①②③ C. ①② D. ①②④
【答案】B
【解析】分析:分別利用平行四邊形的性質(zhì)以及全等三角形的判定與性質(zhì)得出△AEF≌△DMF(ASA),得出對應線段之間關(guān)系進而得出答案.
詳解:①∵F是AD的中點,∴AF=FD.
∵在ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF.
∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故①正確;
延長EF,交CD延長線于M.
∵四邊形ABCD是平行四邊形,∴AB∥CD,∴∠A=∠MDF.
∵F為AD中點,∴AF=FD.在△AEF和△DFM中, ,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M.
∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°.
∵FM=EF,∴EF=CF,故②正確;
③∵EF=FM,∴S△EFC=S△CFM.
∵MC>BE,∴S△BEC<2S△EFC
故③正確;
④設∠FEC=x,則∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x.
∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④錯誤.
故答案為:①②③.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形OABC中,O為平面直角坐標系的原點,A點的坐標為,C點的坐標為,點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著的路線移動即:沿著長方形移動一周.
寫出點B的坐標______
當點P移動了4秒時,描出此時P點的位置,并求出點P的坐標.
在移動過程中,當點P到x軸距離為5個單位長度時,求點P移動的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了貫徹教育部關(guān)于中小學生“每天鍛煉一小時”的要求,某市教育局做了一次隨機抽樣調(diào)查,其內(nèi)容是:(1)學生每天鍛煉時間是否達到1小時;(2)學生每天鍛煉時間未達到1小時的原因.隨機調(diào)查了600名學生,把所得的數(shù)據(jù)制成了如下的扇形統(tǒng)計圖和條形統(tǒng)計圖(不完整)
根據(jù)圖示,回答以下問題:
(1)每天鍛煉時間達到1小時的人數(shù)占被調(diào)查總?cè)藬?shù)的百分比是;
每天鍛煉時間未達到1小時的人數(shù)占被調(diào)查總?cè)藬?shù)的百分比是;
每天鍛煉時間未達到1小時的人數(shù)為人,其中原因是“時間被擠占”的人數(shù)是人;
(2)補全扇形統(tǒng)計圖和條形統(tǒng)計圖;
(3)若該市現(xiàn)有中小學生約27萬人,據(jù)此調(diào)查,可估計今年該市中小學生每天鍛煉未達到1小時的學生約有多少萬人?
(4)從這次接受調(diào)查的學生中,隨機抽取一名學生的“每天鍛煉一小時”的情況,回答內(nèi)容為“時間被擠占”的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC的三個頂點的坐標分別為A(﹣5,0)、B(﹣2,3)、C(﹣1,0)
(1)畫出△ABC關(guān)于坐標原點O成中心對稱的△A1B1C1;
(2)將△ABC繞坐標原點O順時針旋轉(zhuǎn)90°,畫出對應的△A′B′C′,
(3)若以A′、B′、C′、D′為頂點的四邊形為平行四邊形,請直接寫出在第四象限中的D′坐標 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠ABC=30°.點D是直線BC上的一個動點,連接AD,并以AD為邊在AD的右側(cè)作等邊△ADE.
(1)如圖①,當點E恰好在線段BC上時,請判斷線段DE和BE的數(shù)量關(guān)系,并結(jié)合圖①證明你的結(jié)論;
(2)當點E不在直線BC上時,連接BE,其它條件不變,(1)中結(jié)論是否成立?若成立,請結(jié)合圖②給予證明;若不成立,請直接寫出新的結(jié)論;
(3)若AC=3,點D在直線BC上移動的過程中,是否存在以A、C、D、E為頂點的四邊形是梯形?如果存在,直接寫出線段CD的長度;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖在數(shù)軸上點表示數(shù),點表示數(shù),且、滿足
點表示的數(shù)為________;點表示的數(shù)為________.
若點與點之間的距離表示為,點與點之間的距離表示為,請在數(shù)軸上找一點,使,則點表示的數(shù)________.
若在原點處放一擋板,一小球甲從點處以個單位/秒的速度向左運動;同時另一小球乙從點處以個單位/秒的速度也向左運動,在碰到擋板后(忽略球的大小,可看作一點)以原來的速度向相反的方向運動,設運動的時間為(秒),請分別表示出甲、乙兩小球到原點的距離(用含的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某小型企業(yè)實行工資與業(yè)績掛鉤制度,工人工資分為A、B、C、D四個檔次.小明對該企業(yè)三月份工人工資進行調(diào)查,并根據(jù)收集到的數(shù)據(jù),繪制了如下尚不完整的統(tǒng)計表與扇形統(tǒng)計圖.
根據(jù)上面提供的信息,回答下列問題:
(1)求該企業(yè)共有多少人?
(2)請將統(tǒng)計表補充完整;
(3)扇形統(tǒng)計圖中“C檔次”的扇形所對的圓心角是度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中, 為坐標原點,點在反比例函數(shù)的圖象上,作軸于點.
(1)的面積為______;
(2)若點的橫坐標為4,點在軸的正半軸,且是等腰三角形,求點的坐標;
(3)動點從原點出發(fā),沿軸的正方向運動,以為直角邊,在的右側(cè)作等腰, ;若在點運動過程中,斜邊始終在軸上,求 的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com