【題目】如下圖,△MNP中,∠P=60°MN=NP,MQ⊥PN,垂足為Q,延長MNG,取NG=NQ,若△MNP的周長為12,MQ=a,則△MGQ周長是( )

A. 8+2a B. 8+a C. 6+a D. 6+2a

【答案】D

【解析】

試題由∠P=60°,MN=NP,可得△MNP是等邊三角形,再根據(jù)等邊三角形的三線合一的性質(zhì)以及等腰三角形的判定,即可求得結果。

∵∠P=60°MN=NP

∴△MNP是等邊三角形.

∵MQ⊥PN,垂足為Q

∴PM=PN=MN=4,NQ=NG=2,MQ=a∠QMN=30°,∠PNM=60°

∵NG=NQ,

∴∠G=∠QMN,

∴QG=MQ=a,

∵△MNP的周長為12

∴MN=4,NG=2

∴△MGQ周長是6+2a

故選D

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】數(shù)學課上,張老師出示了問題:如圖1,四邊形ABCD是正方形,E是邊BC的中點.AEF=90°,且EF交正方形外角∠DCG的平分線CF于點F,求證:AE=EF.

經(jīng)過思考,小明展示了一種正確的解題思路:在AB上截取BM=BE,連接ME,則AM=EC,易證AME≌△ECF,所以AE=EF.

在此基礎上,同學們作了進一步的研究:

(1)小穎提出:如圖2,如果把E是邊BC的中點改為E是邊BC(B,C)的任意一點,其它條件不變,那么結論“AE=EF”仍然成立,你認為小穎的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;

(2)小華提出:如圖3,EBC的延長線上(C點外)的任意一點,其他條件不變,結論“AE=EF”仍然成立。你認為小華的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,△ABC的三個頂點的坐標為A(1,0),B(6,0),C(3,-4).

(1)求△ABC的面積

(2)若A,B兩點的位置不變,點P軸什么位置時,的面積是面積的2倍;

(3)若A,B兩點的位置不變,點P軸什么位置時,的面積是面積的2倍;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某超市為慶祝開業(yè)舉辦大酬賓抽獎活動,凡在開業(yè)當天進店購物的顧客,都能獲得一次抽獎的機會,抽獎規(guī)則如下:在一個不透明的盒子里裝有分別標有數(shù)字1、2、3、4的4個小球,它們的形狀、大小、質(zhì)地完全相同,顧客先從盒子里隨機取出一個小球,記下小球上標有的數(shù)字,然后把小球放回盒子并攪拌均勻,再從盒子中隨機取出一個小球,記下小球上標有的數(shù)字,并計算兩次記下的數(shù)字之和,若兩次所得的數(shù)字之和為8,則可獲得50元代金券一張;若所得的數(shù)字之和為6,則可獲得30元代金券一張;若所得的數(shù)字之和為5,則可獲得15元代金券一張;其他情況都不中獎.
(1)請用列表或樹狀圖(樹狀圖也稱樹形圖)的方法(選其中一種即可),把抽獎一次可能出現(xiàn)的結果表示出來;
(2)假如你參加了該超市開業(yè)當天的一次抽獎活動,求能中獎的概率P.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,(M2,N2),BAC=30°,EAB邊的中點,以BE為邊作等邊BDE,連接AD,CD.

(1)求證:ADE≌△CDB;

(2)若BC=,在AC邊上找一點H,使得BH+EH最小,并求出這個最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC邊在直線a上,將△ABC繞點A順時針旋轉到位置①可得到點P1 , 此時AP1= ;將位置①的三角形繞點P1順時針旋轉到位置②可得到點P2 , 此時AP2= +1;將位置②的三角形繞點P2順時針旋轉到位置③可得到點P3時,AP3= +2…按此規(guī)律繼續(xù)旋轉,直至得到點P2026為止,則AP2016=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形網(wǎng)格中,小正方形的邊長為1,△ABC的頂點在格點上.

(1)判斷△ABC是否是直角三角形?并說明理由.

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=2,∠DAB=60°,點E是AD邊的中點,點M是AB邊上的一個動點(不與點A重合),延長ME交CD的延長線于點N,連接MD,AN.

(1)求證:四邊形AMDN是平行四邊形.
(2)當AM的值為何值時,四邊形AMDN是矩形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,在RtABC中,∠C=90°,BC=6cm,AC=8 cm,AB=10 cm. 現(xiàn)有一動點P,從A點出發(fā),沿著三角形的邊AC-CB-BA運動,回到A點停止,速度為1 cm/s,設運動時間為t s.

(1)當t=_______時,ABC的周長被線段AP平分為相等的兩部分.

(2)當t=_______時,APC的面積等于ABC面積的一半.

(3)還有一個DEF,E=90°,如圖所示,DE=4cm,DF=5cm,D=A. ABC的邊上,若另外有一個動點Q,與P 同時從A點出發(fā),沿著邊AB-BC-CA運動,回到點A停止. 在兩點運動過程中某一時刻,恰好APQDEF全等,則點Q的運動速度 cm/s.

查看答案和解析>>

同步練習冊答案