【題目】數(shù)學課上,張老師出示了問題:如圖1,四邊形ABCD是正方形,點E是邊BC的中點.∠AEF=90°,且EF交正方形外角∠DCG的平分線CF于點F,求證:AE=EF.
經(jīng)過思考,小明展示了一種正確的解題思路:在AB上截取BM=BE,連接ME,則AM=EC,易證△AME≌△ECF,所以AE=EF.
在此基礎(chǔ)上,同學們作了進一步的研究:
(1)小穎提出:如圖2,如果把“點E是邊BC的中點”改為“點E是邊BC上(除B,C外)的任意一點”,其它條件不變,那么結(jié)論“AE=EF”仍然成立,你認為小穎的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由;
(2)小華提出:如圖3,點E是BC的延長線上(除C點外)的任意一點,其他條件不變,結(jié)論“AE=EF”仍然成立。你認為小華的觀點正確嗎?如果正確,寫出證明過程;如果不正確,請說明理由。
【答案】(1)正確,證明見解析;(2)正確,證明見解析.
【解析】
解:(1)正確.
證明:在AB上取一點M,使AM=EC,連結(jié)ME,
∴BM=BE. ∴∠BME=45°. ∴∠AME=135°.
∵CF是外角平分線,
∴∠DCF = 45°. ∴∠ECF = 135°.
∴∠AME = ∠ECF .
∵∠AEB +∠BAE=90°,∠AEB + ∠CEF = 90°,
∴∠BAE = ∠CEF.
∴△AME ≌ △ECF(ASA).
∴AE=EF.
(2)正確.
證明:
在BA的延長線上取一點N,
使AN=CE,連接NE.
∴BN=BE.
∴∠N=∠FCE=45°.
∵四邊形ABCD是正方形,
∴AD∥BE . ∴∠DAE=∠BEA .
∴∠NAE=∠CEF . ∴△ANE≌△ECF(ASA).
∴AE=EF.
科目:初中數(shù)學 來源: 題型:
【題目】(1)如圖1,在四邊形ABCD中,AB=CB,AD=CD.求證:∠C=∠A.
(2)如圖2,點B、F、C、E在一條直線上,F(xiàn)B=CE,AB∥ED,AC∥FD.求證:AB=DE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=BC=3,點D在邊AC上,且AD=2CD,DE⊥AB,垂足為點E,聯(lián)結(jié)CE,求:
(1)線段BE的長;
(2)∠ECB的余切值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】把邊長為3的正方形ABCD繞點A順時針旋轉(zhuǎn)45°得到正方形AB′C′D′,邊BC與D′C′交于點O,則四邊形ABOD′的周長是( 。
A.
B.6
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】九年級三班學生蘇琪為幫助同桌萬宇鞏固“平面直角坐標系四個象限內(nèi)及坐標軸上的點的坐標特點”這一基礎(chǔ)知識,在三張完全相同且不透明的卡片正面分別寫上了﹣3,0,2三個數(shù)字,背面向上洗勻后隨機抽取一張,將卡片上的數(shù)字記為a,再從剩下的兩張中隨機取出一張,將卡片上的數(shù)字記為b,然后叫萬宇在平面直角坐標系中找出點M(a,b)的位置.
(1)請你用樹狀圖幫萬宇同學進行分析,并寫出點M所有可能的坐標;
(2)求點M在第二象限的概率;
(3)張老師在萬宇同學所畫的平面直角坐標系中,畫了一個半徑為3的⊙O,過點M能作多少條⊙O的切線?請直接寫出答案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,在平面直角坐標系xOy中,點A、B、C分別為坐標軸上上的三個點,且OA=1,OB=3,OC=4,
(1)求經(jīng)過A、B、C三點的拋物線的解析式;
(2)在平面直角坐標系xOy中是否存在一點P,使得以以點A、B、C、P為頂點的四邊形為菱形?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)若點M為該拋物線上一動點,在(2)的條件下,請求出當|PM﹣AM|的最大值時點M的坐標,并直接寫出|PM﹣AM|的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】圖1為長方形紙片ABCD,AD=26,AB=22,直線L、M皆為長方形的對稱軸.今將長方形紙片沿著L對折后,再沿著M對折,并將對折后的紙片左上角剪下直角三角形,形成一個五邊形EFGHI,如圖2.最后將圖2的五邊形展開后形成一個八邊形,如圖2,且八邊形的每一邊長恰好均相等.
(1)若圖2中HI長度為x,請以x分別表示剪下的直角三角形的勾長和股長.
(2)請求出圖3中八邊形的一邊長的數(shù)值,并寫出完整的解題過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如下圖,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足為Q,延長MN至G,取NG=NQ,若△MNP的周長為12,MQ=a,則△MGQ周長是( )
A. 8+2a B. 8+a C. 6+a D. 6+2a
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com