(2012•眉山)已知:PA、PB與⊙O相切于A點(diǎn)、B點(diǎn),OA=1,PA=
3
,則圖中陰影部分的面積是
3
-
π
3
3
-
π
3
(結(jié)果保留π).
分析:連接OP,由PA與PB都為圓O的切線,利用切線長(zhǎng)定理得到PA=PB,且AP與OA垂直,PB與OB垂直,在直角三角形AOP中,由OA與PA的長(zhǎng),利用勾股定理求出OP的長(zhǎng),可得出OA為OP的一半,利用直角三角形中一直角邊等于斜邊的一半得出∠APO為30°,得出∠AOP為60°,同理得到∠BOP為60°,確定出∠AOB為120°,陰影部分的面積=三角形APO的面積+三角形BPO的面積-扇形AOB的面積,分別利用三角形的與扇形的面積公式計(jì)算,即可得到陰影部分的面積.
解答:解:連接OP,如圖所示,
∵PA、PB與⊙O相切于A點(diǎn)、B點(diǎn),
∴PA=PB,∠PAO=∠PBO=90°,
在Rt△AOP中,OA=1,PA=
3
,
根據(jù)勾股定理得:OP=
OA2+AP2
=2,
∴OA=
1
2
OP,
∴∠APO=30°,
∴∠AOP=60°,
同理∠BOP=60°,
∴∠AOB=120°,
則S陰影=S△AOP+S△BOP-S扇形AOB=
1
2
AP•OA+
1
2
BP•OB-
120π×12
360
=
1
2
×
3
×1+
1
2
×
3
×1-
π
3
=
3
-
π
3

故答案為:
3
-
π
3
點(diǎn)評(píng):此題考查了切線的性質(zhì),切線長(zhǎng)定理,勾股定理,以及扇形面積的計(jì)算,熟練掌握性質(zhì)及定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•眉山)已知:如圖,在直角坐標(biāo)系中,有菱形OABC,A點(diǎn)的坐標(biāo)為(10,0),對(duì)角線OB、AC相交于D點(diǎn),雙曲線y=
k
x
(x>0)經(jīng)過D點(diǎn),交BC的延長(zhǎng)線于E點(diǎn),且OB•AC=160,有下列四個(gè)結(jié)論:
①雙曲線的解析式為y=
20
x
(x>0);
②E點(diǎn)的坐標(biāo)是(4,8);
③sin∠COA=
4
5
;
④AC+OB=12
5
,其中正確的結(jié)論有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•眉山)已知:如圖,四邊形ABCD是正方形,BD是對(duì)角線,BE平分∠DBC交DC于E點(diǎn),交DF于M,F(xiàn)是BC延長(zhǎng)線上一點(diǎn),且CE=CF.
(1)求證:BM⊥DF;
(2)若正方形ABCD的邊長(zhǎng)為2,求ME•MB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•眉山)已知:如圖,直線y=3x+3與x軸交于C點(diǎn),與y軸交于A點(diǎn),B點(diǎn)在x軸上,△OAB是等腰直角三角形.
(1)求過A、B、C三點(diǎn)的拋物線的解析式;
(2)若直線CD∥AB交拋物線于D點(diǎn),求D點(diǎn)的坐標(biāo);
(3)若P點(diǎn)是拋物線上的動(dòng)點(diǎn),且在第一象限,那么△PAB是否有最大面積?若有,求出此時(shí)P點(diǎn)的坐標(biāo)和△PAB的最大面積;若沒有,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案