【題目】如圖,在RtΔABC中,∠ACB90°AC=9BC=12,AD是∠BAC的平分線,若點P,Q分別是ADAC上的動點,則PCPQ的最小值是( )

A.B.C.12D.15

【答案】B

【解析】

過點DDEAB于點E,過點EEQAC于點QEQAD于點P,連接CP,此時PC+PQ=EQ是最小值,根據(jù)勾股定理可求出AB的長度,再根據(jù)EQAC、∠ACB=90°即可得出EQBC,進而可得出,代入數(shù)據(jù)即可得出EQ的長度,此題得解.

解:如圖所示,過點DDEAB于點E,過點EEQAC于點Q,EQAD于點P,連接CP,此時PC+PQ=EQ是最小值,


RtABC中,∠ACB=90°,AC=9,BC=12,

AD是∠BAC的平分線,
∴∠CAD=EAD,

在△ACD和△AED中,,

∴△ACD≌△AEDAAS),
AE=AC=9
EQAC,∠ACB=90°,
EQBC

,

,

.

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDABH,點G是⊙O上一點,AGCD于點K,延長KD至點E,使KE=GE,分別延長EG、AB相交于點F.

(1)求證:EF是⊙O的切線;

(2)若ACEF,試探究KG、KD、GE之間的關(guān)系,并說明理由;

(3)在(2)的條件下,若sinE=,AK=2,求FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校組織一項公益知識競賽,比賽規(guī)定:每個班級由2名男生、2名女生及1名班主任老師組成代表隊.但參賽時,每班只能有3名隊員上場參賽,班主任老師必須參加,另外2名隊員分別在2名男生和2名女生中各隨機抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任組成了代表隊,求恰好抽到由男生甲、女生丙和這位班主任一起上場參賽的概率.(請用畫樹狀圖列表列舉等方法給出分析過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖正方形ABCD的邊長為4,E、F分別為DC、BC中點.

(1)求證:△ADE≌△ABF.

(2)求△AEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場經(jīng)營某種品牌的玩具,進價是20元,根據(jù)市場調(diào)查:在一段時間內(nèi),銷售單價是30元時,銷售量是500件,而銷售單價每漲1元,就會少售出10件玩具.

(1)不妨設(shè)該種品牌玩具的銷售單價為x元(x>40),請你分別用x的代數(shù)式來表示銷售量y件和銷售該品牌玩具獲得利潤w元,并把結(jié)果填寫在表格中:

銷售單價(元)

x

銷售量y(件)

__________

銷售玩具獲得利潤w(元)

__________

(2)在(1)問條件下,若商場獲得了8000元銷售利潤,求該玩具銷售單價x應(yīng)定為多少元.

(3)在(1)問條件下,若玩具廠規(guī)定該品牌玩具銷售單價不低于35元,且商場要完成不少于350件的銷售任務(wù),求商場銷售該品牌玩具獲得的最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,在ABC中,∠A>B,分別以點A,C為圓心,大于AC長為半徑畫弧,兩弧交于點P,點Q,作直線PQAB于點D,再分別以點B,D為圓心,大于BD長為半徑畫弧,兩弧交于點M,點N,作直線MNBC于點E,若CDE是等邊三角形,則∠A=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:3+2=(1+2,善于思考的小明進行了以下探索:
設(shè)a+b=(m+n2(其中a、b、m、n均為整數(shù)),則有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn,這樣小明就找到了一種把部分a+b的式子化為平方式的方法。
請我仿照小明的方法探索并解決下列問題:
(1)當(dāng)a、b、m、n均為正整數(shù)時,若a+b=(m+n2,用含m、n的式子分別表示a、b,得a=________, b=___________.

(2)若a+4=(m+n2,且a、m、n均為正整數(shù),求a的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線平移后過點A(8,,0)和原點,頂點為B,對稱軸與軸相交于點C,與原拋物線相交于點D

(1)求平移后拋物線的解析式并直接寫出陰影部分的面積;

(2)如圖2,直線AB與軸相交于點P,點M為線段OA上一動點,為直角,邊MNAP相交于點N,設(shè),試探求:

為何值時為等腰三角形;

為何值時線段PN的長度最小,最小長度是多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點IABC的角平分線的交點.若ABBIAC,設(shè)∠BACα,則∠AIB______(用含α的式子表示)

查看答案和解析>>

同步練習(xí)冊答案