【題目】中,,的垂直平分線與所在直線相交所得的銳角為則底角的大小為__________

【答案】

【解析】

首先根據(jù)題意作圖,即可得∠ADE=52°,∠AED=90°,然后直角三角形的兩銳角互余,①當(dāng)三角形是銳角三角形時,即可求得∠A的度數(shù);②當(dāng)三角形是鈍角三角形時,可得∠A的鄰補角的度數(shù);又由AB=AC,根據(jù)等邊對等角與三角形內(nèi)角和的定理,即可求得底角B的大小

解:∵AB的垂直平分線與AC所在直線相交所得的銳角為52°,
即∠ADE=52°,∠AED=90°,


①如圖1,當(dāng)△ABC是銳角三角形時,∠A=38°,
AB=AC,

B=C=

②如圖2,當(dāng)△ABC是鈍角三角形時,∠BAC=ADE+AED=52°+90°=142°,

AB=AC,

∴∠B=C=

綜上所述,底角B的度數(shù)是

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】尺規(guī)作圖與圖形變換

(尺規(guī)作圖)(不寫作法,保留作圖痕跡)

如圖,一輛汽車在直線形的公路上由點A向點B行駛,MN 是分別位于公路兩側(cè)的村莊.

1)在圖1中求作一點P,使汽車行駛到此位置時,與村莊M,N的距離之和最;

2)在圖2中求作一點Q,使汽車行駛到此位置時,與村莊 M,N 的距離相等.

(圖形變換)

如圖3所示,在正方形網(wǎng)格中,△ABC為格點三角形(即三角形的頂點都在格點上).

3)把△ABC 沿 BA 方向平移后,點 A 移到點,請你在網(wǎng)格中畫出平移后得到的;

4)把繞點 按逆時針方向旋轉(zhuǎn) 90°,請你在網(wǎng)格中畫出旋轉(zhuǎn)后的

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)解不等式:,并把它的解集表示在數(shù)軸上;

2)解不等式組,并寫出它的所有非負(fù)整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,過點作射線AD//BC,點從點出發(fā)沿射線的速度運動.同時點從點出發(fā)沿射線的速度運動.連結(jié)于點,設(shè)點運動時間為

1)求證:AG=BG

2)求AE+CF的長(用含t的代數(shù)式表示).

3)設(shè)的面積為,直接寫出當(dāng)時,的面積(且含的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,,點是射線上一動點(與點不重合),、分別平分,分別交射線于點、.

1)求的度數(shù);

2)當(dāng)點運動時,之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請寫出它們之間的關(guān)系,并說明理由;若變化,請寫出變化規(guī)律.

3)當(dāng)點運動到使時,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】太陽能光伏發(fā)電因其清潔、安全、便利、高效等特點,已成為世界各國普遍關(guān)注和重點發(fā)展的新興產(chǎn)業(yè),如圖是太陽能電池板支撐架的截面圖,其中的粗線表示支撐角鋼,太陽能電池板與支撐角鋼AB的長度相同,均為300cm,AB的傾斜角為,BE=CA=50cm,支撐角鋼CD,EF與底座地基臺面接觸點分別為D,F(xiàn),CD垂直于地面,于點E.兩個底座地基高度相同即點D,F(xiàn)到地面的垂直距離相同,均為30cm,點A到地面的垂直距離為50cm,求支撐角鋼CD和EF的長度各是多少cm結(jié)果保留根號

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,正比例函數(shù)yax的圖象與反比例函數(shù)y的圖象交于點A(3,2)

(1)試確定上述正比例函數(shù)和反比例函數(shù)的表達(dá)式;

(2)根據(jù)圖象回答,在第一象限內(nèi),當(dāng)x取何值時,反比例函數(shù)的值大于正比例函數(shù)的值?

(3)點Mm,n)是反比例函數(shù)圖象上的一動點,其中0<m<3,過點M作直線MBx軸,交y軸于點B;過點A作直線ACy軸交x軸于點C,交直線MB于點D.當(dāng)四邊形OADM的面積為6時,請判斷線段BMDM的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】微商小明投資銷售一種進(jìn)價為每條元的圍巾.銷售過程中發(fā)現(xiàn),每月銷售量(件)與銷售單價(元)之間的關(guān)系可近似的看作一次函數(shù) ,銷售過程中銷售單價不低于成本價,而每條的利潤不高于成本價的

)設(shè)小明每月獲得利潤為(元),求每月獲得利潤(元)與銷售單價(元)之間的函數(shù)關(guān)系式,并確定自變量的取值范圍

)當(dāng)銷售單價定為多少元時,每月可獲得最大利潤?每月的最大利潤是多少?

)如果小明想要每月獲得的利潤不低于,那么小明每月的成本最少需要多少元?(成本進(jìn)價銷售量)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線x軸交于A(-1,0)和B(3,0)兩點,與y軸交于點C,對稱軸與x軸交于點E,點D為頂點,連接BD、CD、BC

(1)求證BCD是直角三角形;

(2)點P為線段BD上一點,若∠PCO+∠CDB=180°,求點P的坐標(biāo);

(3)點M為拋物線上一點,作MNCD,交直線CD于點N,若∠CMN=∠BDE,請直接寫出所有符合條件的點M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案