【題目】如圖,在△ABC中,CFABF,BEACEMBC的中點,BC=10

(1)若∠ABC=50°,∠ACB=60°,求∠EMF的度數(shù);

(2)EF=4,求△MEF的面積.

【答案】(1)EMF=40°;(2)2

【解析】

(1)根據(jù)直角三角形的性質(zhì)得到BM=FM,根據(jù)等腰三角形的性質(zhì)、三角形內(nèi)角和定理計算;

(2)MNEFN,根據(jù)直角三角形的性質(zhì)得到FM=BC=5,根據(jù)等腰三角形的性質(zhì)、三角形面積公式計算.

解:(1)CFAB,MBC的中點,

BM=FM

∵∠ABC=50°,

∴∠MFB=MBF=50°,

∴∠BMF=180°-2×50°=80°

同理,∠CME═180°-2×60°=60°

∴∠EMF=180°-BMF-CME=40°;

(2)MNEFN,

CFAB,MBC的中點,

MFRtBFC斜邊上的中線,

FM=BC=5,

同理可得,ME=5

∴△EFM是等腰三角形,

EF=4,

FN=2

MN==,

∴△EFM的面積=EFMN=×4×=2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知長方形ABCD中,AB=5,BC=8,并且AB//x軸,若點A的坐標為(-2,4),則點C的坐標為_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知:AB是⊙O的直徑,點C在⊙O上,CD是⊙O的切線,AD⊥CD于點D.E是AB延長線上一點,CE交⊙O于點F,連結(jié)OC,AC.

(1)求證:AC平分∠DAO;

(2)若∠DAO=105°,∠E=30°;

①求∠OCE的度數(shù). ②若⊙O的半徑為 ,求線段CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:求1+2+22+23+24+…+220的值.

解:設S=1+2+22+23+24+…+220,將等式兩邊同時乘以2得:2S=2+22+23+24+25+…+221

將下式減去上式得2SS=2211

S=2211

1+2+22+23+24+…+220=2211

請你仿照此法計算:

11+2+22+23+24+…+22016

21+2+22+23+24+…+2n(其中n為正整數(shù))

31+5+52+53+54+…+5n(其中n為正整數(shù))

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一次數(shù)學活動課上,張明用17個邊長為1的小正方形搭成了一個幾何體,然后他請王亮用其他同樣的小正方體在旁邊再搭一個幾何體,使王亮所搭幾何體恰好可以和張明所搭幾何體拼成一個無縫隙的大長方體(不改變張明所搭幾何體的形狀),那么王亮至少還需要 個小立方體,王亮所搭幾何體的表面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學有一塊四邊形的空地ABCD,如圖所示,學校計劃在空地上種植草皮,經(jīng)測量∠B90°AB3m,BC4mCD12m,AD13m.若每平方米草皮需要200元,問學校需要投入多少資金買草皮?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在△ABC中,∠BAC=90°,AB=AC,過點A作直線DE,且滿足BDDE于點D,CEDE于點E,當B,C在直線DE的同側(cè)時,

1)求證:DE=BD+CE;

2)如果上面條件不變,當B,C在直線DE的異側(cè)時,如圖2,問BD、DECE之間的數(shù)量關(guān)系如何?寫出結(jié)論并證明

3)如果上面條件不變,當B,C在直線DE的異側(cè)時,如圖3,問BD、DE、CE之間的數(shù)量關(guān)系如何?寫出結(jié)論并證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A(-13),點B(-1,-4),若常數(shù)a使得一次函數(shù)y=ax+1與線段AB有交點,且使得關(guān)于x的不等式組無解,則所有滿足條件的整數(shù)a的個數(shù)為( )

A. 3B. 4C. 5D. 6

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE于點G,BG=4,則△EFC的周長為( )

A. 11 B. 10 C. 9 D. 8

查看答案和解析>>

同步練習冊答案