【題目】如圖,在△ABC中,點(diǎn)D,E分別是邊BC,AC上的中點(diǎn),連接DE,并延長(zhǎng)DE至點(diǎn)F,使EF=ED,連接AD,AF,BF,CF,線(xiàn)段AD與BF相交于點(diǎn)O,過(guò)點(diǎn)D作DG⊥BF,垂足為點(diǎn)G.
(1)求證:四邊形ABDF是平行四邊形;
(2)當(dāng)時(shí),試判斷四邊形ADCF的形狀,并說(shuō)明理由;
(3)若∠CBF=2∠ABF,求證:AF=2OG.
【答案】(1)證明見(jiàn)解析;(2)四邊形ADCF是矩形,理由見(jiàn)解析;(3)證明見(jiàn)解析.
【解析】
(1)欲證明四邊形ABDF是平行四邊形,只要證明AF∥BD,AF=BD即可.
(2)結(jié)論:四邊形ADCF是矩形,只要證明∠DAF=90°即可.
(3)作AM⊥DG 于M,連接BM,先證明AM=2OG,再證明AM=AF即可解決問(wèn)題.
(1)證明:∵點(diǎn)D,E分別是邊BC,AC上的中點(diǎn),
∴ED∥AB,AE=CE,
∵EF=ED,
∴四邊形ADCF是平行四邊形,
∴AF∥BC,
∴四邊形ABDF是平行四邊形;
(2)四邊形ADCF是矩形.
理由:∵AE=DF,EF=ED,
∴AE=EF=DE,
∴∠EAF=∠AFE,∠DAE=∠ADE,
∴∠DAF=∠EAF+∠EAD=×180°=90°,
由(1)知:四邊形ADCF是平行四邊形;
∴四邊形ADCF是矩形;
(3)證明:作AM⊥DG 于M,連接BM.
∵四邊形ABDF是平行四邊形,
∴OA=OD,∵OG∥AM,
∴GM=GD,
∴AM=2OG,
∵BG⊥DM,GM=GD,
∴BM=BD,
∴∠CBF=∠MBG,
∵∠CBF=2∠ABF,
∴∠ABM=∠ABF,
∵AM∥BF,
∴∠MAB=∠ABF,
∴∠MAB=∠MBA,
∴AM=BM=BD=AF=2OG,
∴AF=2OG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,□ABCD中,AB:BC=3:2,∠DCB=60°,點(diǎn)E在AB上,BE=2AE,點(diǎn)F為BC的中點(diǎn),DP⊥AF,DQ⊥CE,則DP:DQ=( )
A.3:4B.1:1C.:D.3:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠E.
(1)AD與BC平行嗎?請(qǐng)說(shuō)明理由;
(2)AB與EF的位置關(guān)系如何?為什么?
(3)若AF平分∠BAD,試說(shuō)明:
①∠BAD=2∠F;②∠E+∠F=90°.
注:本題第(1)、(2)小題在下面的解答過(guò)程的空格內(nèi)填寫(xiě)理由或數(shù)學(xué)式;第(3)小題要寫(xiě)出解題過(guò)程.
解:(1)AD∥BC,理由如下:
∵∠ADE+∠ADF=180°,(平角的定義)
∠ADE+∠BCF=180°,(已知)
∴∠ADF=∠______, (____________________________)
∴ AD∥BC (____________________________)
(2)AB與EF的位置關(guān)系是:_______________.
∵BE平分∠ABC, (已知)
∴∠ABE=∠ABC. (角平分線(xiàn)的定義)
又∵∠ABC=2∠E, (已知),
即∠E=∠ABC,
∴∠E=∠_____. (_____________________________)
∴ ______∥_____. (_____________________________)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】松雷中學(xué)圖書(shū)館近日購(gòu)進(jìn)甲、乙兩種圖書(shū),每本甲圖書(shū)的進(jìn)價(jià)比每本乙圖書(shū)的進(jìn)價(jià)高20元,花780元購(gòu)進(jìn)甲圖書(shū)的數(shù)量與花540元購(gòu)進(jìn)乙圖書(shū)的數(shù)量相同.
(1)求甲、乙兩種圖書(shū)每本的進(jìn)價(jià)分別是多少元?
(2)松雷中學(xué)計(jì)劃購(gòu)進(jìn)甲、乙兩種圖書(shū)共70本,總購(gòu)書(shū)費(fèi)用不超過(guò)4000元,則最多購(gòu)進(jìn)甲種圖書(shū)多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,P點(diǎn)從點(diǎn)A開(kāi)始以2厘米/秒的速度沿A→B→C的方向移動(dòng),點(diǎn)Q從點(diǎn)C開(kāi)始以1厘米/秒的速度沿C→A→B的方向移動(dòng),在直角三角形ABC中,∠A=90°,若AB=16厘米,AC=12厘米,BC=20厘米,如果P、Q同時(shí)出發(fā),用t(秒)表示移動(dòng)時(shí)間,那么:
(1)如圖1,若P在線(xiàn)段AB上運(yùn)動(dòng),Q在線(xiàn)段CA上運(yùn)動(dòng),試求出t為何值時(shí),QA=AP
(2)如圖2,點(diǎn)Q在CA上運(yùn)動(dòng),試求出t為何值時(shí),三角形QAB的面積等于三角形ABC面積的;
(3)如圖3,當(dāng)P點(diǎn)到達(dá)C點(diǎn)時(shí),P、Q兩點(diǎn)都停止運(yùn)動(dòng),試求當(dāng)t為何值時(shí),線(xiàn)段AQ的長(zhǎng)度等于線(xiàn)段BP的長(zhǎng)的
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校計(jì)劃組織全校1500名師生外出參加集體活動(dòng).經(jīng)過(guò)研究,決定租用當(dāng)?shù)刈廛?chē)公司一共60輛、兩種型號(hào)客車(chē)作為交通工具.
下表是租車(chē)公司提供給學(xué)校有關(guān)兩種型號(hào)客車(chē)的載客量和租金信息:
型號(hào) | 載客量 | 租金單價(jià) |
30人輛 | 400元輛 | |
20人輛 | 300元輛 |
注:載客量指的是每輛客車(chē)最多可載該校師生的人數(shù).
學(xué)校租用型號(hào)客車(chē)輛,租車(chē)總費(fèi)用為元.
(1)求與的函數(shù)解析式,請(qǐng)直接寫(xiě)出的取值范圍;
(2)若要使租車(chē)總費(fèi)用不超過(guò)22000元,一共有幾種租車(chē)方案?并結(jié)合函數(shù)性質(zhì)說(shuō)明哪種租車(chē)方案最省錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,過(guò)點(diǎn)、分別作軸的垂線(xiàn),垂足分別為、.
(1)求直線(xiàn)和直線(xiàn)的解析式;
(2)點(diǎn)為直線(xiàn)上的一個(gè)動(dòng)點(diǎn),過(guò)作軸的垂線(xiàn)交直線(xiàn)于點(diǎn),是否存在這樣的點(diǎn),使得以、、、為頂點(diǎn)的四邊形為平行四邊形?若存在,求此時(shí)點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若沿方向平移(點(diǎn)在線(xiàn)段上,且不與點(diǎn)重合),在平移的過(guò)程中,設(shè)平移距離為,與重疊部分的面積記為,試求與的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算:
(1)5-3+4-
(2)(--)×(-36)
(3)-―(1―0.5)÷×[2+(-4)2]
(4)(-)×52÷|-|+()2019×42020
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC是等邊三角形,點(diǎn)D是直線(xiàn)BC上一點(diǎn),以AD為一邊在AD的右側(cè)作等邊△ADE.求∠DCE的大小.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com