【題目】如圖,中,,,,,將邊AC沿CE翻折,使點(diǎn)A落在AB上的點(diǎn)D處;再將邊BC沿CF翻折,使點(diǎn)B落在CD的延長線上的點(diǎn)B′處,兩條折痕與斜邊AB分別交于點(diǎn)E、F,則線段EF的長為( )
A.B.C.4D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,點(diǎn)E在AD上,請僅用無刻度直尺按要求作圖(保留作圖痕跡,不寫作法)
(1)在圖1中,過點(diǎn)E作直線EF將□ABCD分成兩個(gè)全等的圖形;
(2)在圖2中,DE=DC,請你作出∠BAD的平分線AM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖8,AB兩地之間有一座山,以前從A地到B地需要經(jīng)過C地.現(xiàn)在政府出資打通了一條山嶺隧道,使從A地到B地可沿直線AB直接到達(dá).已知BC=8km,∠A=45°,∠B=53°.
(1)求點(diǎn)C到直線AB的距離;
(2)求現(xiàn)在從A地到B地可比原來少走多少路程?(結(jié)果精確到0.1km;參考數(shù)據(jù):≈1.41,sin53°≈0.80,cos53°≈0.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是邊長為12 cm的正三角形,動(dòng)點(diǎn)P從A向B以2 cm/s勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從B向C以1 cm/s勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)B時(shí),P,Q兩點(diǎn)停止運(yùn)動(dòng),設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,則當(dāng)△PBQ為直角三角形時(shí),t的值為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將△ABC沿著CE翻折,使點(diǎn)A落在點(diǎn)D處,CD與AB交于點(diǎn)F,恰好有CE=CF,若DF=6,AF=14,則tan∠CEF=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:有一個(gè)角是其鄰角一半的圓內(nèi)接四邊形叫做圓內(nèi)倍角四邊形.
(1)如圖1,四邊形ABCD內(nèi)接于⊙O,∠DCB﹣∠ADC=∠A,求證:四邊形ABCD為圓內(nèi)接倍角四邊形;
(2)在(1)的條件下,⊙O半徑為5.
①若AD為直徑,且sinA=,求BC的長;
②若四邊形ABCD中有一個(gè)角為60°,且BC=CD,則四邊形ABCD的面積是 ;
(3)在(1)的條件下,記AB=a,BC=b,CD=c,AD=d,求證:d2﹣b2=ab+cd.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為.
(1)如圖1,若點(diǎn)B 在x軸正半軸上,點(diǎn),,,求點(diǎn)B坐標(biāo);
(2)如圖2,若點(diǎn)B 在x軸負(fù)半軸上,軸于點(diǎn)E,軸于點(diǎn)F,,MF交直線AE于點(diǎn)M,若點(diǎn),BM=5,求點(diǎn)M坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知AB是⊙O的直徑,弦CD⊥AB于H,過CD延長線上一點(diǎn)E作⊙O的切線交AB的延長線于F,切點(diǎn)為G,連接AG交CD于K.
(1)如圖1,求證:KE=GE;
(2)如圖2,連接CABG,若∠FGB=∠ACH,求證:CA∥FE;
(3)如圖3,在(2)的條件下,連接CG交AB于點(diǎn)N,若sinE=,AK=,求CN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】BD、CE分別是△ABC的邊AC、AB上的高,P在BD的延長線上,且BP=AC,點(diǎn)Q在CE上,CQ=AB,
求證:(1)AP=AQ ;
(2)AP⊥AQ.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com