如圖,已知AB是⊙O的直徑,BC⊥AB,連結(jié)OC,弦ADOC,直線CD交BA的延長線于點E.
(1)求證:直線CD是⊙O的切線;
(2)若DE=2BC,求AD:OC的值.
(1)證明:連結(jié)DO.
∵ADOC,
∴∠DAO=∠COB,∠ADO=∠COD.…(1分)
又∵OA=OD,
∴∠DAO=∠ADO,
∴∠COD=∠COB.…(2分)
在△COD和△COB中,
CO=CO
∠COD=∠COB
OD=OB

∴△COD≌△COB(SAS)…(3分)
∴∠CDO=∠CBO=90°.
又∵點D在⊙O上,
∴CD是⊙O的切線.…(4分)

(2)∵△COD≌△COB.
∴CD=CB.…(5分)
∵DE=2BC,
∴ED=2CD.…(6分)
∵ADOC,
∴△EDA△ECO.…(7分)
AD
OC
=
DE
CE
=
2
3
.…(8分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

以線段AB為直徑作一個半圓,圓心為O,C是半圓周上的點,且OC2=AC•BC,則∠CAB=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

一個點到一個圓的最短距離是3cm,最長距離是5cm,則這個圓的半徑是______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,菱形ABCD的對角線AC和BD相交于O點,E,F(xiàn),G,H分別是AB,BC,CD,DA的中點,求證:E,F(xiàn),G,H四個點在以O(shè)為圓心的同一個圓上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

等腰梯形ABCD中,ADBC,求證:A,B,C,D四個頂點共圓.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:在△ABC中,AB=AC,∠A=36°,AB交⊙O于G、H兩點,AC交⊙O于F、E兩點,GH=FE,BH=CE.
(1)如圖1,求證:AO垂直平分BC;
(2)如圖2,BF與CG交于點M,連接AM,并延長分別交GF、BC于點N、D,若BH=1,GH=3,GA=2,求
MN
MD
的值;
(3)在圖3中,若⊙O與底邊BC相切于中點D,點G、F分別為AB、AC的中點,請你找出與EF相等的線段,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,AB是⊙O的直徑,∠BAC=60°,P是OB上一點,過P作AB的垂線與AC的延長線交于點Q,過點C的切線CD交PQ于D,連接OC.
(1)求證:△CDQ是等腰三角形;
(2)如果△CDQ≌△COB,求BP:PO的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,∠C=90°,O是斜邊AB上的一點,圓O過點A并與邊BC相切于點D,與邊AC相交于點E.
(1)求證:AD平分∠BAC;
(2)若圓O的半徑為4,∠B=30°,求AC長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,小明同學(xué)測量一個光盤的直徑,他只有一把直尺和一塊三角板,他將直尺、光盤和三角板如圖放置于桌面上,并量出AB=3cm,則此光盤的直徑是( 。
A.3cmB.2
2
cm
C.3
3
cm
D.6
3
cm

查看答案和解析>>

同步練習(xí)冊答案