【題目】如圖,是半圓的直徑,、是半圓上的兩點(diǎn),且,與交于點(diǎn).
(1)若,求的度數(shù);
(2)若,,求的長(zhǎng).
【答案】(l);(2);
【解析】
(1)由圓周角定理的推論可得∠ACB=90°,再根據(jù)平行線的性質(zhì)可得∠AEO=90°,∠AOD=∠B,然后根據(jù)垂徑定理可得,連接OC,則可得∠COD的度數(shù),最后根據(jù)圓周角定理即可求出結(jié)果;
(2)由垂徑定理可得AE=CE,進(jìn)而可得OE是△ABC的中位線,再根據(jù)勾股定理求出BC的長(zhǎng),然后根據(jù)三角形中位線定理解答即可.
解:(1)∵是半圓的直徑,
∴∠ACB=90°,
∵OD∥BC,,
∴∠AEO=90°,∠AOD=∠B=70°,
∴,
連接OC,如圖,則∠AOD=∠COD=70°,
∴∠CAD=∠COD=35°;
(2)在Rt△ABC中,∵,,
∴,
∵OD⊥AC,∴AE=CE,
又∵AO=BO,
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,CG⊥BA交BA的延長(zhǎng)線于點(diǎn)G.一等腰直角三角尺按如圖1所示的位置擺放,該三角尺的直角頂點(diǎn)為F,一條直角邊與AC邊在一條直線上,另一條直角邊恰好經(jīng)過(guò)點(diǎn)B.
(1)在圖1中請(qǐng)你通過(guò)觀察、測(cè)量BF與CG的長(zhǎng)度,猜想并寫(xiě)出BF與CG滿足的數(shù)量關(guān)系,然后證明你的猜想;
(2)當(dāng)三角尺沿AC方向平移到圖2所示的位置時(shí),一條直角邊仍與AC邊在同一直線上,另一條直角邊交BC邊于點(diǎn)D,過(guò)點(diǎn)D作DE⊥BA于點(diǎn)E.此時(shí)請(qǐng)你通過(guò)觀察、測(cè)量DE、DF與CG 的長(zhǎng)度,猜想并寫(xiě)出DE+DF與CG之間滿足的數(shù)量關(guān)系,然后證明你的猜想;
(3)當(dāng)三角尺在(2)的基礎(chǔ)上沿AC方向繼續(xù)平移到圖3所示的位置(點(diǎn)F在線段AC上,且點(diǎn)F與點(diǎn)C不重合)時(shí),(2)中的猜想是否仍然成立?(不用說(shuō)明理由)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線與軸交于,兩點(diǎn).
(1)求該拋物線的解析式;
(2)若拋物線交軸于點(diǎn),在該拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn),使得的周長(zhǎng)最?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,和是有公共頂點(diǎn)的直角三角形,,點(diǎn)為射線,的交點(diǎn).
(1)如圖1,若和是等腰三角形,求證:;
(2)如圖2,若,問(wèn):(1)中的結(jié)論是否成立?請(qǐng)說(shuō)明理.
(3)在(1)的條件下,,,若把繞點(diǎn)旋轉(zhuǎn),當(dāng)時(shí),請(qǐng)直接寫(xiě)出的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,有4張除了正面圖案不同,其余都相同的卡片,將這4張卡片背面朝上混勻.
(1)若淇淇從中抽一張卡片,求抽到的卡片上所示的立體圖形的主視圖為矩形的概率;
(2)若嘉嘉先從中隨機(jī)抽出一張后放回并混勻,淇淇再隨機(jī)抽出一張,請(qǐng)用列表法或畫(huà)樹(shù)狀圖求兩人抽到的卡片上所示的立體圖形的主視圖都是矩形的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(問(wèn)題實(shí)驗(yàn))如圖①,在地面上有兩根等長(zhǎng)立柱,之間懸掛一根近似成拋物線的繩子.
(1)求繩子最低點(diǎn)到地面的距離;
(2)如圖②,因?qū)嶋H需要,需用一根立柱撐起繩子.
①若在離為4米的位置處用立柱撐起,使立柱左側(cè)的拋物線的最低點(diǎn)距為1米,離地面1.8米,求的長(zhǎng);
②將立柱來(lái)回移動(dòng),移動(dòng)過(guò)程中,在一定范圍內(nèi),總保持立柱左側(cè)拋物線的形狀不變,其函數(shù)表達(dá)式為,當(dāng)拋物線最低點(diǎn)到地面距離為0.5米時(shí),求的值.
(問(wèn)題抽象)如圖③,在平面直角坐標(biāo)系中,函數(shù)的圖像記為,函數(shù)的圖像記為,其中是常數(shù),圖像、合起來(lái)得到的圖像記為.
設(shè)在上的最低點(diǎn)縱坐標(biāo)為,當(dāng)時(shí),直接寫(xiě)出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線的圖象與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,且關(guān)于直線對(duì)稱(chēng),點(diǎn)A的坐標(biāo)為(﹣1,0).
(Ⅰ)求拋物線C的解析式和頂點(diǎn)坐標(biāo);
(Ⅱ)將拋物線繞點(diǎn)O順時(shí)針旋轉(zhuǎn)180°得拋物線,且有點(diǎn)P(m,t)既在拋物線上,也在拋物線上,求m的值;
(Ⅲ)當(dāng)時(shí),二次函數(shù)的最小值為,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩臺(tái)機(jī)床同時(shí)加工一批直徑為100毫米的零件,為了檢驗(yàn)產(chǎn)品的質(zhì)量,從產(chǎn)品中隨機(jī)抽查6件進(jìn)行測(cè)量,測(cè)得的數(shù)據(jù)如下:(單位:毫米)甲機(jī)床:99 98 100 100 103乙機(jī)床:99 100 102 99 100 100則加工這批零件性能較好的機(jī)床是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,的垂直平分線分別與,及的延長(zhǎng)線相交于點(diǎn),,.是的外接圓,連接.
(1)求證:是的切線;
(2)若,求證:;
(3)在(2)的條件下,當(dāng)時(shí),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com