【題目】已知在△ABC中,AB=AC. (1)若∠A=36,在△ABC中畫一條線段,能得到2個(gè)等腰三角形(不包括△ABC),這2個(gè)等腰三角形的頂角的度數(shù)分別是_____;(2)若∠A36, 當(dāng)∠A=_____時(shí),在等腰△ABC中畫一條線段,能得到2個(gè)等腰三角形(不包括△ABC).(寫出兩個(gè)答案即可)

【答案】(1)36°,108°; (2) ,90°,108°.

【解析】

(1)利用等腰三角形的性質(zhì)以及∠A的度數(shù),進(jìn)而得出這2個(gè)等腰三角形的頂角度數(shù)

(2)利用(1)種思路進(jìn)而得出符合題意的圖形即可

1)如圖1所示:∵AB=AC,∠A=36°,∴當(dāng)AE=BE,則∠A=∠ABE=36°,則∠AEB=108°,則∠EBC=36°,∴這2個(gè)等腰三角形的頂角度數(shù)分別是36°108°.

故答案為:36°,108°

(2)如圖1.

AB=AC,∴∠ABC=∠C

AD=BD,∴∠ABD=∠A,∴∠BDC=2∠A

BC=DC,∴∠DBC=∠CDB=2∠A,∴∠C=∠ABC=3∠A

∵∠A+∠ABC+∠C=180°,∴∠A+3∠A+3∠A=180°,∴7∠A=180°∴∠A=

如圖2,AB=AC,△ABD和△ADC都是等腰三角形,∠BAC=45°+45°=90°;

如圖3,AB=AC,△ABD和△ADC都是等腰三角形,∠BAC=36°+72°=108°.

故答案為:90°或108°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)C與原點(diǎn)O重合,點(diǎn)B在y軸的正半軸上,點(diǎn)A在反比例函數(shù)y= (k>0,x>0)的圖象上,點(diǎn)D的坐標(biāo)為(4,3).

(1)求k的值;
(2)若將菱形ABCD沿x軸正方向平移,當(dāng)菱形的頂點(diǎn)D落在函數(shù)y= (k>0,x>0)的圖象上時(shí),求菱形ABCD沿x軸正方向平移的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A從坐標(biāo)原點(diǎn)出發(fā),沿x軸的正方向運(yùn)動,點(diǎn)B坐標(biāo)為(0,4),M是線段AB的中點(diǎn),將點(diǎn)M繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)90°得到點(diǎn)C,過點(diǎn)C作x軸的垂線,垂足為F,過點(diǎn)B作y軸的垂線與直線CF相交于點(diǎn)E,連接AC,BC,設(shè)點(diǎn)A的橫坐標(biāo)為t.

(1)當(dāng)點(diǎn)C與點(diǎn)E恰好重合時(shí),求t的值;
(2)當(dāng)t為何值時(shí),BC取得最小值;
(3)設(shè)△BCE的面積為S,當(dāng)S=6時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,1+2=180°,3=100°,OK平分∠DOH.

(1)直線ABCD有怎樣的位置關(guān)系?說明理由;

(2)KOH的度數(shù)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點(diǎn)DAB邊的中點(diǎn),過點(diǎn)D作邊AB的垂線lEl上任意一點(diǎn),且AC=5BC=8,則△AEC的周長最小值為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】細(xì)觀察,找規(guī)律

下列各圖中的MA1NAn平行.

1)圖①中的∠A1+A2= ______ 度,

圖②中的∠A1+A2+A3= ______ 度,

圖③中的∠A1+A2+A3+A4= ______ 度,

圖④中的∠A1+A2+A3+A4+A5= ______ 度,

,

第⑩個(gè)圖中的∠A1+A2+A3+…+A11= ______

2)第n個(gè)圖中的∠A1+A2+A3+…+An+1= ______

3)請你證明圖②的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)問題填空:
(1)問題發(fā)現(xiàn):
如圖①,在等邊三角形ABC中,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等邊三角形AMN,連接CN,NC與AB的位置關(guān)系為

(2)深入探究:
如圖②,在等腰三角形ABC中,BA=BC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,連接CN,試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說明理由;

(3)拓展延伸:
如圖③,在正方形ADBC中,AD=AC,點(diǎn)M為BC邊上異于B、C的一點(diǎn),以AM為邊作正方形AMEF,點(diǎn)N為正方形AMEF的中點(diǎn),連接CN,若BC=10,CN= ,試求EF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABCP,Q分別是BCAC上的點(diǎn),PRABPSAC,垂足分別是R,S,AQ=PQPR=PS,下面三個(gè)結(jié)淪:AS=AR:②QPAR;③△BRP≌△CSP.其中正確的是( )

A. ①③ B. ②③ C. ①② D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】科學(xué)實(shí)驗(yàn)證明,平面鏡反射光線的規(guī)律是:射到平面鏡上的光線和被反射出的光線與平面鏡所夾的角相等.如圖1,一束平行光線射向一個(gè)水平鏡面后被反射,此時(shí)有,.如圖2,一束光線射到平面鏡上,被平面鏡反射到平面鏡上,又被鏡反射,若平面鏡反射出的光線平行于光線

1)當(dāng),求的度數(shù);

2)求的度數(shù).

查看答案和解析>>

同步練習(xí)冊答案