【題目】閱讀下面的解題過(guò)程,解答后面的問(wèn)題:

如圖,在平面直角坐標(biāo)系中, ,為線段的中點(diǎn),求點(diǎn)的坐標(biāo);

解:分別過(guò)軸的平行線,過(guò),軸的平行線,兩組平行線的交點(diǎn)如圖所示,設(shè),則,

由圖可知:

線段的中點(diǎn)的坐標(biāo)為

(應(yīng)用新知)

利用你閱讀獲得的新知解答下面的問(wèn)題:

(1)已知,,則線段的中點(diǎn)坐標(biāo)為

(2)平行四邊形中,點(diǎn),,的坐標(biāo)分別為,,,利用中點(diǎn)坐標(biāo)公式求點(diǎn)的坐標(biāo)。

(3)如圖,點(diǎn)在函數(shù)的圖象上, 軸上,在函數(shù)的圖象上 ,以,四個(gè)點(diǎn)為頂點(diǎn),且以為一邊構(gòu)成平行四邊形,直接寫(xiě)出所有滿足條件的點(diǎn)坐標(biāo)。

【答案】(1)線段的中點(diǎn)坐標(biāo)是(2)點(diǎn)的坐標(biāo)為;(3)符合條件的點(diǎn)坐標(biāo)為.

【解析】

1)直接套用中點(diǎn)坐標(biāo)公式,即可得出中點(diǎn)坐標(biāo);

2)根據(jù)AC、BD的中點(diǎn)重合,可得出,代入數(shù)據(jù)可得出點(diǎn)D的坐標(biāo);

3)當(dāng)AB為該平行四邊形一邊時(shí),此時(shí)CDAB,分別求出以AD、BC為對(duì)角線時(shí),以AC、BD為對(duì)角線的情況可得出點(diǎn)D坐標(biāo).

解:(1AB中點(diǎn)坐標(biāo)為,即AB的中點(diǎn)坐標(biāo)是:(1,1);

2)根據(jù)平行四邊形的性質(zhì):對(duì)角線互相平分,可知、的中點(diǎn)重合,

由中點(diǎn)坐標(biāo)公式可得:,

代入數(shù)據(jù),得:,

解得:,所以點(diǎn)的坐標(biāo)為;

3)當(dāng)為該平行四邊形一邊時(shí),則,對(duì)角線為、;

故可得:,.

故可得

,

代入到中,可得.

綜上,符合條件的點(diǎn)坐標(biāo)為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以△ABC的邊AB,AC為邊分別向外作正方形ABDE和正方形ACFG,連接EG,MEG的中點(diǎn),連接AM

1)如圖1,∠BAC=90°,試判斷AMBC關(guān)系?

2)如圖2,∠BAC≠90°,圖1中的結(jié)論是否成立?若不成立,說(shuō)明理由;若成立,給出證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)為4,EBC邊的中點(diǎn),點(diǎn)P在射線AD上,過(guò)PPF⊥AEF.

(1)求證:△PFA∽△ABE;

(2)當(dāng)點(diǎn)P在射線AD上運(yùn)動(dòng)時(shí),設(shè)PA=x,是否存在實(shí)數(shù)x,使以P,F(xiàn),E為頂點(diǎn)的三角形也與△ABE相似?若存在,請(qǐng)求出x的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,線段 AB4,M AB 的中點(diǎn),動(dòng)點(diǎn) P 到點(diǎn) M 的距離是 1,連接 PB,線段

PB 繞點(diǎn) P 逆時(shí)針旋轉(zhuǎn) 90°得到線段 PC,連接 AC,則線段 AC 長(zhǎng)度的最大值是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平行四邊形中,分別為邊的中點(diǎn),連接,作的延長(zhǎng)線于

1)求證:;

2)若四邊形是矩形,則四邊形是什么特殊四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC 中,∠ABC=90°,∠C=30°,AC 的垂直平分線交 BC 于點(diǎn) D,交AC 于點(diǎn) E.

(1)判斷 BE △DCE 的外接圓⊙O 的位置關(guān)系,并說(shuō)明理由;

(2) BE=,BD=1,求△DCE 的外接圓⊙O 的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在矩形ABCD中,EF經(jīng)過(guò)對(duì)角線BD的中點(diǎn)O,并交AD,BC于點(diǎn)EF

1)求證:△BOF≌△DOE

2)若AB=4cm,AD=5cm,求四邊形ABFE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一次函數(shù)y=kx+b的圖象是直線l,點(diǎn)A(,)在反比例函數(shù)y=的圖象上.

(1)求m的值;

(2)如圖,若直線l與反比例函數(shù)的圖象相交于M、N兩點(diǎn),不等式kx+b>的解集為1<x<2,求一次函數(shù)的表達(dá)式;

(3)當(dāng)b=4時(shí),一次函數(shù)與反比例函數(shù)的圖象有兩個(gè)交點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD內(nèi)接于O,∠BAD=90°過(guò)CCEAD垂足為E,∠EDC=∠BDC.

1)求證:CEO的切線;

2)若DE+CE=4,AB=6,BD的值

查看答案和解析>>

同步練習(xí)冊(cè)答案