【題目】如圖,正方形ABCD的邊長為4,EBC邊的中點,點P在射線AD上,過PPF⊥AEF.

(1)求證:△PFA∽△ABE;

(2)當點P在射線AD上運動時,設PA=x,是否存在實數(shù)x,使以P,F(xiàn),E為頂點的三角形也與△ABE相似?若存在,請求出x的值;若不存在,說明理由.

【答案】(1)證明見解析(2)2或5

【解析】

(1)在△PFA與△ABE中,易得∠PAF=AEB及∠PFA=ABE=90°;故可得△PFA∽△ABE;

(2)根據(jù)題意:若△EFP∽△ABE,則∠PEF=EAB;必須有PEAB;分兩種情況進而列出關系式.

(1)證明:∵AD∥BC,

∴∠PAF=∠AEB.

∵∠PFA=∠ABE=90°,

∴△PFA∽△ABE.

(2)若△EFP∽△ABE,則∠PEF=∠EAB.

∴PE∥AB.

四邊形ABEP為矩形.

PA=EB=2,即x=2.

△PFE∽△ABE,則∠PEF=∠AEB.

∵∠PAF=∠AEB,

∴∠PEF=∠PAF.

∴PE=PA.

∵PF⊥AE,

點F為AE的中點.

∵AE=,

∴EF=AE=

,即,

PE=5,即x=5.

滿足條件的x的值為2或5.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在一次數(shù)學課上,張老師出示了一個題目:如圖,ABCD的對角線相交于點O,過點OEF垂直于BDAB,CD分別于點F,E,連接DF,BE.請根據(jù)上述條件,寫出一個正確結論.其中四位同學寫出的結論如下:

小青:OE=OF;小何:四邊形DFBE是正方形;

小夏:S四邊形AFED=S四邊形FBCE;小雨:∠ACE=CAF.

這四位同學寫出的結論中不正確的是( 。

A. 小青 B. 小何 C. 小夏 D. 小雨

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤中,指針位置固定,三個扇形的面積都相等,且分別標有數(shù)字1,2,3.

(1)小明轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,指針所指扇形中的數(shù)字是奇數(shù)的概率為________;

(2)小明先轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄下指針所指扇形中的數(shù)字;接著再轉(zhuǎn)動轉(zhuǎn)盤一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,再次記錄下指針所指扇形中的數(shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB=AC,添加下列條件,仍不能判定ΔABEΔACD的是( )

A.B=CB.CEB=BDCC.EC=DBD.BE=DC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A的坐標為(1,0),以線段OA為邊在第四象限內(nèi)作等邊三角形AOB,點Cx正半軸上一動點(OC>1),連接BC,以線段BC為邊在第四象限內(nèi)作等邊CBD,連接DA并延長,交y軸于點E.

①△OBCABD全等嗎?判斷并證明你的結論;

②當點C運動到什么位置時,以A,E,C為頂點的三角形是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,定義:在四邊形ABCD中,若ADBC,且ADB+∠BCA=180°,則把四邊形ABCD叫作互補等對邊四邊形.如圖,在等腰ABE中,AEBE,四邊形ABCD是互補等對邊四邊形.試說明:ABD=∠BACE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知一次函數(shù)的圖象經(jīng)過點(﹣,﹣ ),且圖象與x軸的交點到原點的距離為1,則該一次函數(shù)的解析式為:_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,∠C=90°, BC=10AC=6,過點ABC的平行線l,P為直線l上的動點,且BCP是等腰三角形,則AP的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠B=D=90°,AE,CF分別平分∠BAD及∠DCB,則AEFC嗎?為什么?

查看答案和解析>>

同步練習冊答案