【題目】課間休息時小明拿著兩根木棒玩,小華看到后要小明給他玩,小明說:“較短木棒AB長40cm,較長木棒CD長60cm,將它們的一端重合,放在同一條直線上,此時兩根木棒的中點分別是點E和點F,則點E和點F間的距離是多少?你說對了我就給你玩”聰明的你請幫小華求出此時兩根木棒的中點E和F間的距離是多少?
【答案】50cm或10cm.
【解析】
根據(jù)中點定義求出BE、BF的長度,然后分①AB在CD的左側(cè)且點B和點C重合時,EF=BE+BF,②當(dāng)AB在CD上且點B和點C重合時,EF=BF﹣BE,分別代入數(shù)據(jù)進(jìn)行計算即可得解.
∵點E 是AB的中點,∴BE=AB=×40=20(cm).
∵點F 是CD的中點(或點F 是BD的中點)
∴CF=CD=×60=30(cm)或BF=CD=×60=30(cm).分兩種情況討論:
①如圖1,當(dāng)AB在CD的左側(cè)且點B和點C重合時.
EF=BE+CF=20+30=50(cm)或EF=BE+BF=20+30=50(cm);
②如圖2.當(dāng)AB在CD上且點B和點C重合時.
EF=CF﹣BE=30﹣20=10(cm)或EF=BF﹣BE=30﹣20=10(cm).
綜上所述:此時兩根木棒的中點E和F間的距離是50cm或10cm.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,B,C,D四個點不在同一直線上,根據(jù)下列語句畫圖.
(1)畫射線AB,畫直線AC,畫線段AD;
(2)連接BD與直線AC相交于點E;
(3)延長線段BC,反向延長線段DC;
(4)若在上述所畫的圖形中,設(shè)從點D到點C有四條路徑,它們分別是①D→A→B→C;②D→B→C;③D→E→C;④D→C;哪條道路最短?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC=3cm,把它沿對角線AC方向平移1cm得到菱形EFGH,則圖中陰影部分圖形的面積與四邊形ENCM的面積之比為( )
A.9:4
B.12:5
C.3:1
D.5:2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】注意:為了使同學(xué)們更好地解答本題的第(Ⅱ)問,我們提供了一種分析問題的方法,你可以依照這個方法按要求完成本題的解答,也可以選用其他方法,按照解答題的一般要求進(jìn)行解答即可.
如圖,將一個矩形紙片ABCD,放置在平面直角坐標(biāo)系中,A(0,0),B(4,0),D(0,3),M是邊CD上一點,將△ADM沿直線AM折疊,得到△ANM.
(Ⅰ)當(dāng)AN平分∠MAB時,求∠DAM的度數(shù)和點M的坐標(biāo);
(Ⅱ)連接BN,當(dāng)DM=1時,求△ABN的面積;
(Ⅲ)當(dāng)射線BN交線段CD于點F時,求DF的最大值.(直接寫出答案)
在研究第(Ⅱ)問時,師生有如下對話:
師:我們可以嘗試通過加輔助線,構(gòu)造出直角三角形,尋找方程的思路來解決問題.
小明:我是這樣想的,延長MN與x軸交于P點,于是出現(xiàn)了Rt△NAP,…
小雨:我和你想的不一樣,我過點N作y軸的平行線,出現(xiàn)了兩個Rt△NAP,…
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的圖象經(jīng)過點A,B,C,已知點A的坐標(biāo)為(﹣3,0),點B坐標(biāo)為(1,0),點C在y軸的正半軸,且∠CAB=30°.
(1)求拋物線的函數(shù)解析式;
(2)若直線l:y= x+m從點C開始沿y軸向下平移,分別交x軸、y軸于點D、E.
①當(dāng)m>0時,在線段AC上否存在點P,使得點P,D,E構(gòu)成等腰直角三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.
②以動直線l為對稱軸,線段AC關(guān)于直線l的對稱線段A′C′與二次函數(shù)圖象有交點,請直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解學(xué)生參加戶外活動的情況,和諧中學(xué)對學(xué)生每天參加戶外活動的時間進(jìn)行抽樣調(diào)查,并將調(diào)查結(jié)果繪制成如圖兩幅不完整的統(tǒng)計圖,根據(jù)圖示,請回答下列問題:
(Ⅰ)被抽樣調(diào)查的學(xué)生有 人,并補全條形統(tǒng)計圖 ;
(Ⅱ)每天戶外活動時間的中位數(shù)是 (小時);
(Ⅲ)該校共有2000名學(xué)生,請估計該校每天戶外活動時間超過1小時的學(xué)生有 人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線EF與MN相交于點O,∠MOE=30°,將一直角三角尺的直角頂點與點O重合,直角邊OA與MN重合,OB在∠NOE內(nèi)部.操作:將三角尺繞點O以每秒5°的速度沿順時針方向旋轉(zhuǎn)一周,設(shè)運動時間為t(s).
(1)當(dāng)t為何值時,直角邊OB恰好平分∠NOE?此時OA是否平分∠MOE?請說明理由;
(2)若在三角尺轉(zhuǎn)動的同時,直線EF也繞點O以每秒8°的速度順時針方向旋轉(zhuǎn)一周,當(dāng)一方先完成旋轉(zhuǎn)一周時,另一方同時停止轉(zhuǎn)動.
①當(dāng)t為何值時,OE平分∠AOB?
②OE能否平分∠NOB?若能請直接寫出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】歷史上的數(shù)學(xué)巨人歐拉最先把關(guān)于x的多項式用記號f(x)來表示,例如f(x)=x2+3x﹣5,把x=某數(shù)時多項式的值用f(某數(shù))來表示,例如x=1時多項式x2+3x﹣5的值記為f(1)=12+3×1﹣5=﹣1.
(1)已知g(x)=﹣2x2﹣3x+1,分別求出g(﹣1)和g(﹣2)的值.
(2)已知h(x)=ax3+2x2﹣x﹣14,,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算:
(1)計算:(﹣1)3÷(﹣5)2×(﹣)﹣|0.8﹣1|;
(2)計算:(1+﹣2.75)×(﹣24)+(﹣1)2011﹣|﹣2|;
(3)先化簡,再求值,已知|x+2|+(y﹣)2=0,求3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)]的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com