【題目】化簡求值
(1)計算: ﹣3tan230°+2
(2)化簡: ÷(1+

【答案】
(1)解:原式= +1﹣3×( 2+2|sin45°﹣1|

= +1﹣1+2(1﹣

= +1﹣1+2﹣

=2


(2)解:原式= ÷

=


【解析】(1)根據(jù)二次根式的性質(zhì)以及特殊角的銳角三角函數(shù)值即可求出答案.(2)根據(jù)分式的運算法則即可求出答案.
【考點精析】關(guān)于本題考查的分式的混合運算和特殊角的三角函數(shù)值,需要了解運算的順序:第一級運算是加法和減法;第二級運算是乘法和除法;第三級運算是乘方.如果一個式子里含有幾級運算,那么先做第三級運算,再作第二級運算,最后再做第一級運算;如果有括號先做括號里面的運算.如順口溜:"先三后二再做一,有了括號先做里."當(dāng)有多層括號時,先算括號內(nèi)的運算,從里向外{[(?)]};分母口訣:30度、45度、60度的正弦值、余弦值的分母都是2,30度、45度、60度的正切值、余切值的分母都是3,分子口訣:“123,321,三九二十七”才能得出正確答案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將矩形ABCD沿DE折疊,使頂點A落在DC上的點A′處,然后將矩形展平,沿EF折疊,使頂點A落在折痕DE上的點G處.再將矩形ABCD沿CE折疊,此時頂點B恰好落在DE上的點H處.如圖2.
(1)求證:EG=CH;
(2)已知AF= ,求AD和AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某區(qū)為了解七年級學(xué)生開展跳繩活動的情況,隨機調(diào)查了該區(qū)部分學(xué)校七年級學(xué)生1分鐘跳繩的次數(shù),將調(diào)查結(jié)果進(jìn)行統(tǒng)計,下面是根據(jù)調(diào)查數(shù)據(jù)制作的統(tǒng)計圖表的一部分.

分組

次數(shù)x(個)

人數(shù)

A

0≤x<120

24

B

120≤x<130

72

C

130≤x<140

D

x≥140

根據(jù)以上信息,解答下列問題:
(1)在被調(diào)查的學(xué)生中,跳繩次數(shù)在120≤x<130范圍內(nèi)的人數(shù)為人,跳繩次數(shù)在0≤x<120范圍內(nèi)的人數(shù)占被調(diào)查人數(shù)的百分比為%;
(2)本次共調(diào)查了名學(xué)生,其中跳繩次數(shù)在130≤x<140范圍內(nèi)的人數(shù)為人,跳繩次數(shù)在x≥140范圍內(nèi)的人數(shù)占被調(diào)查人數(shù)的百分比為%;
(3)該區(qū)七年級共有4000名學(xué)生,估計該區(qū)七年級學(xué)生1分鐘跳繩的次數(shù)不少于130個的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知動點A在反比例函數(shù)y= (x>0)圖象上,AB⊥x軸于點B,AC⊥y軸于點C,延長CA到點D,使AD= AB,延長BA到點E,使AE= AC,直線DE分別交x、y軸于點P、Q,當(dāng) = 時,則△ACE與△ADB面積之和等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點,拋物線y=﹣x2+bx+3與x軸交于點A(1,0)和點B,與y軸交于點C.

(1)求拋物線的解析式.
(2)直線y=kx+3k經(jīng)過點B,與y軸的負(fù)半軸交于點D,點P為第二象限內(nèi)拋物線上一點,連接PD,射線PD繞點P順時針旋轉(zhuǎn)與線段BD交于點E,且∠EPD=2∠PDC,∠EPD的平分線交線段BD于點H,∠BEP+∠BDP=90°
①若四邊形PHDC是平行四邊形,求點P的坐標(biāo);
②過點E作EF⊥PD,交PD于點G,交y軸于點F,已知PF=3 ,求直線PF的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC的三個頂點的坐標(biāo)分別為A(﹣2,2)、B(﹣5,0)、C(﹣1,0),P(a,b)是△ABC的邊AC上一點:

(1)將△ABC繞原點O逆時針旋轉(zhuǎn)90°得到△A1B1C1 , 請在網(wǎng)格中畫出△A1B1C1 , 旋轉(zhuǎn)過程中點A所走的路徑長為
(2)將△ABC沿一定的方向平移后,點P的對應(yīng)點為P2(a+6,b+2),請在網(wǎng)格畫出上述平移后的△A2B2C2 , 并寫出點A2的坐標(biāo):A2).
(3)若以點O為位似中心,作△A3B3C3與△ABC成2:1的位似,則與點P對應(yīng)的點P3位似坐標(biāo)為(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲騎摩托車從A地去B地,乙開汽車從B地去A地,同時出發(fā),勻速行駛,各自到達(dá)終點后停止,設(shè)甲、乙兩人間距離為s(單位:千米),甲行駛的時間為t(單位:小時),s與t之間的函數(shù)關(guān)系如圖所示,有下列結(jié)論:
①出發(fā)1小時時,甲、乙在途中相遇;
②出發(fā)1.5小時時,乙比甲多行駛了60千米;
③出發(fā)3小時時,甲、乙同時到達(dá)終點;
④甲的速度是乙速度的一半.
其中,正確結(jié)論的個數(shù)是( 。

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2m+3)x+m2+2=0.
(1)若方程有實數(shù)根,求實數(shù)m的取值范圍;
(2)若方程兩實數(shù)根分別為x1、x2 , 且滿足x12+x22=31+|x1x2|,求實數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有甲、乙兩個容器,分別裝有進(jìn)水管和出水管,兩容器的進(jìn)出水速度不變,先打開乙容器的進(jìn)水管,2分鐘時再打開甲容器的進(jìn)水管,又過2分鐘關(guān)閉甲容器的進(jìn)水管,再過4分鐘同時打開甲容器的進(jìn)、出水管.直到12分鐘時,同時關(guān)閉兩容器的進(jìn)出水管.打開和關(guān)閉水管的時間忽略不計.容器中的水量y(升)與乙容器注水時間x(分)之間的關(guān)系如圖所示.

(1)求甲容器的進(jìn)、出水速度.
(2)甲容器進(jìn)、出水管都關(guān)閉后,是否存在兩容器的水量相等?若存在,求出此時的時間.
(3)若使兩容器第12分鐘時水量相等,則乙容器6分鐘后進(jìn)水速度應(yīng)變?yōu)槎嗌伲?/span>

查看答案和解析>>

同步練習(xí)冊答案