小靜 小宇 | -1 | 1 | 2 |
-1 | (-1,-1) | (-1,1) | (-1,2) |
1 | (1,-1) | (1,1) | (1,2) |
2 | (2,-1) | (2,1) | (2,2) |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省揚(yáng)州市江都區(qū)八年級下學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,一轉(zhuǎn)盤被等分成三個扇形,上面分別標(biāo)有-1,1,2中的一個數(shù),指針固定,轉(zhuǎn)動轉(zhuǎn)盤后任其自由停止,這時(shí)某個扇形會恰好停在指針?biāo)傅奈恢,并相?yīng)得到這個扇形上的數(shù)( 若指針恰好指在等分線上,當(dāng)做指向右邊的扇形).
若轉(zhuǎn)動一次轉(zhuǎn)盤,將所得的數(shù)作為k,則使反比例函數(shù) 的圖象在第一、三象限的概率是多少?若小靜和小宇進(jìn)行游戲,每人各轉(zhuǎn)動兩次轉(zhuǎn)盤,若兩次所得數(shù)的積為正數(shù),則小靜贏,若兩次所得數(shù)的積為負(fù)數(shù),則小宇贏.這是個公平的游戲嗎?請說明理由.(借助畫樹狀圖或列表的方法)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年福建永定湖坑中學(xué)九年級第一學(xué)期第二次階段考試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,一轉(zhuǎn)盤被等分成三個扇形,上面分別標(biāo)有-1,1,2,指針位置固定,轉(zhuǎn)動轉(zhuǎn)盤后任其自由停止后,某個扇形會恰好停在指針?biāo)傅奈恢茫玫竭@個扇形上相應(yīng)的數(shù).若指針恰好指在等分線上,則需重新轉(zhuǎn)動轉(zhuǎn)盤.
(1)若小靜轉(zhuǎn)動轉(zhuǎn)盤一次,則她得到負(fù)數(shù)的概率為 ;
(2)小宇和小靜分別轉(zhuǎn)動轉(zhuǎn)盤一次,若兩人得到的數(shù)相同,則稱兩人“不謀而合”.請用列表法(或畫樹狀圖)求出兩人“不謀而合”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013-2014學(xué)年河北石家莊外國語教育集團(tuán)九年級上第二階段考試數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,一轉(zhuǎn)盤被等分成三個扇形,上面分別標(biāo)有-1,1,2中的一個數(shù),指針位置固定,轉(zhuǎn)動轉(zhuǎn)盤后任其自由停止,這時(shí),鞭個扇形恰好停在指針?biāo)傅奈恢茫⑾鄳?yīng)得到這個扇形上的數(shù)(若指針恰好指在等分線上,當(dāng)做指向右邊的扇形).
⑴若小靜轉(zhuǎn)動轉(zhuǎn)盤一次,求得到負(fù)數(shù)的概率;
⑵小宇和小靜分別轉(zhuǎn)動一次,若兩人得到的數(shù)相同,則稱兩人“不謀而合”,用列表法(或畫樹形圖)求兩人“不謀而合”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com