【題目】如圖,在Rt△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACD交AB于E,若AC=2,AE=1,則BC=______.
【答案】1.5
【解析】
根據余角的性質得到∠BCD=∠A.根據角平分線的定義得到∠ACE=∠DCE.根據三角形的外角的性質得到∠BEC=∠BCE,求得BC=BE,設BC=BE=x,根據勾股定理列方程即可得到結論.
解:∵∠ACB=90°,CD⊥AB,
∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,
∴∠BCD=∠A.
∵CE平分∠ACD,
∴∠ACE=∠DCE.
又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,
∴∠BEC=∠BCE,
∴BC=BE,
設BC=BE=x,
∴AB=1+x,
∵AC2+BC2=AB2,
∴22+x2=(1+x)2,
解得:x=1.5,
故答案為:1.5.
科目:初中數學 來源: 題型:
【題目】有一盒子中裝有3個白色乒乓球,2個黃色乒乓球,1個紅色乒乓球,6個乒乓球除顏色外其它完全一樣,李明同學從盒子中任意摸出一乒乓球.
(1)求摸到每種顏色球的概率;
(2)李明和王濤同學一起做游戲,李明或王濤從上述盒子中任意摸一球,如果摸到白球,李明獲勝,否則王濤獲勝.這個游戲對雙方公平嗎?說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AD∥BC,∠B=∠D=50°,點E、F在BC上,且滿足∠CAD=∠CAE,AF平分∠BAE.
(1)∠CAF= °;
(2)若平行移動CD,那么∠ACB與∠AEB度數的比值是否隨之發(fā)生變化?若變化,試說明理由;若不變,求出這個比值;
(3)在平行移動CD的過程中,是否存在某種情況,使∠AFB=∠ACD?若存在,求出∠ACD度數;若不存在,說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1,已知∠MON=60°,A、B兩點同時從點O出發(fā),點A以每秒x個單位長度沿射線ON勻速運動,點B以每秒y個單位長度沿射線OM勻速運動.
(1)若運動1s時,點A運動的路程比點B運動路程的2倍還多1個單位長度,運動3s時,點A、點B的運動路程之和為12個單位長度,則x=____,y=____;
(2)如圖2,點C為△ABO三條內角平分線交點,連接BC、AC,在點A、B的運動過程中,∠ACB的度數是否發(fā)生變化?若不發(fā)生變化,求其值;若發(fā)生變化,請說明理由;
(3)如圖3,在(2)的條件下,連接OC并延長,與∠ABM的角平分線交于點P,與AB交于點Q.
①試說明∠PBQ=∠ACQ;
②在△BCP中,如果有一個角是另一個角的2倍,請直接寫出∠BAO的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,四邊形ABED是正方形,DB⊥BC,點E為線段DC的中點,
(1)求證:BD2=ADDC.
(2)連接AE,求證:ABCE為平行四邊形.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】甲、乙兩人在筆直的道路AB上相向而行,甲騎自行車從A地到B地,乙駕車從B地到A地,假設他們分別以不同的速度勻速行駛,甲先出發(fā)6分鐘后,乙才出發(fā),在整個過程中,甲、乙兩人之間的距離y(千米)與甲出發(fā)的時間x(分)之間的函數圖象如圖.
(1)A地與B地相距______km,甲的速度為______km/分;
(2)求甲、乙兩人相遇時,乙行駛的路程;
(3)當乙到達終點A時,甲還需多少分鐘到達終點B?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖(1)所示的圖形,像我們常見的學習用品——圓規(guī).我們不妨把這樣圖形叫做“規(guī)形圖”,那么在這一個簡單的圖形中,到底隱藏了哪些數學知識呢?下面就請你發(fā)揮你的聰明才智,解決以下問題:
(1)觀察“規(guī)形圖”,試探究∠BDC與∠A、∠B、∠C之間的關系,并說明理由;
(2)請你直接利用以上結論,解決以下三個問題:
①如圖(2),把一塊三角尺XYZ放置在△ABC上,使三角尺的兩條直角邊XY、圖(1)XZ恰好經過點B、C,若∠A=50°,則∠ABX+∠ACX =__________°;
②如圖(3)DC平分∠ADB,EC平分∠AEB,若∠DAE=50°,∠DBE=130°,求∠DCE的度數;(寫出解答過程)
③如圖(4),∠ABD,∠ACD的10等分線相交于點G1、G2、G9,若∠BDC=140°,∠BG1C=77°,則∠A的度數=__________°.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=60°,D為AB上一點,連接CD.
(1)如圖1,若∠BCA=90°,CD⊥AB,則=______(直接寫出結果).
(2)如圖2,若BD=AC,E為CD的中點,AE與BC存在怎樣的數量關系,判斷并說明理由;
(3)如圖3,CD平分∠ACB,BF平分∠ABC,交CD于F.若BF=AC,求∠ACD的度數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com