【題目】如圖,在中,, 點是邊上一點,連接,以為邊作等邊.
如圖1,若求等邊的邊長;
如圖2,點在邊上移動過程中,連接,取的中點,連接,過點作于點.
①求證:;
②如圖3,將沿翻折得,連接,直接寫出的最小值.
【答案】(1);(2)證明見解析;(3)最小值為
【解析】
(1)過C做CF⊥AB,垂足為F,由題意可得∠B=30°,用正切函數(shù)可求CF的長,再用正弦函數(shù)即可求解;
(2) 如圖(2)1:延長BC到G使CG=BC,易得△CGE≌△CAD,可得CF∥GE,得∠CFA=90°,CF=GE再證DG=AD,得CF=DG,可得四邊形DGFC是矩形即可;
(3)如圖(2)2:設(shè)ED與AC相交于G,連接FG,先證△EDF≌△F D'B得BD'=DE,當(dāng)DE最大時最小,然后求解即可;
解:(1)如圖:過C做CF⊥AB,垂足為F,
∵,
∴∠A=∠B=30°,BF=3
∵tan∠B=
∴CF=
又∵sin∠CDB= sin45°=
∴DC=
∴等邊的邊長為;
①如圖(2)1:延長BC到G使CG=BC
∵∠ACB=120°
∴∠GCE=180°-120°=60°,∠A=∠B=30°
又∵∠ACB=60°
∴∠GCE=∠ ACD
又∵CE=CD
∴△CGE≌△CAD(SAS)
∴∠G=∠ A=30°,GE=AD
又∵EF=FB
∴GE∥FC, GE=FC,
∴∠BCF=∠G=30°
∴∠ACF=∠ACB-∠BCF=90°
∴CF∥DG
∵∠ A=30°
∴GD=AD,
∴CF=DG
∴四邊形DGFC是平行四邊形,
又∵∠ACF=90°
∴四邊形DGFC是矩形,
∴
②)如圖(2)2:設(shè)ED與AC相交于G,連接FG
由題意得:EF=BF, ∠EFD=∠D'FB
∴△EDF≌△F D'B
∴BD'=DE
∴BD'=CD
∴當(dāng)BD'取最小值時,有最小值
當(dāng)CD⊥AB時,BD'min=AC,
設(shè)CDmin=a,則AC=BC=2a,AB=2a
的最小值為;
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:各類方程的解法
求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個一元一次方程來解.求解分式方程,把它轉(zhuǎn)化為整式方程來解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.
用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
(1)問題:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;
(2)拓展:用“轉(zhuǎn)化”思想求方程的解;
(3)應(yīng)用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB段拉直并固定在點P,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,中,,,在以的中點為坐標(biāo)原點,所在直線為軸建立的平面直角坐標(biāo)系中,將繞點順時針旋轉(zhuǎn),使點旋轉(zhuǎn)至軸的正半軸上的點處,若,則圖中陰影部分面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點O為BC邊上一點,⊙O經(jīng)過A、B兩點,與BC邊交于點E,點F為BE下方半圓弧上一點,FE⊥AC,垂足為D,∠BEF=2∠F.
(1)求證:AC為⊙O切線.
(2)若AB=5,DF=4,求⊙O半徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,.動點以每秒個單位的速度從點開始向點移動,直線從與重合的位置開始,以相同的速度沿方向平行移動,且分別與邊交于兩點,點與直線同時出發(fā),設(shè)運動的時間為秒,當(dāng)點移動到與點重合時,點和直線同時停止運動.在移動過程中,將繞點逆時針旋轉(zhuǎn),使得點的對應(yīng)點落在直線上,點的對應(yīng)點記為點,連接,當(dāng)時,的值為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點分別為D、E、F,∠A=80°,點P為⊙O上任意一點(不與E、F重合),則∠EPF=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若二次函數(shù)y=x2﹣2x+k的部分圖象如圖所示,則關(guān)于x的一元二次方程x2﹣2x+k=0的解一個為x1=3,則方程x2﹣2x+k=0另一個解x2=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明本學(xué)期4次數(shù)學(xué)考試成績?nèi)缦卤砣缡荆?/span>
成績類別 | 第一次月考 | 第二次月考 | 期中 | 期末 |
成績分 | 138 | 142 | 140 | 138 |
(1)小明4次考試成績的中位數(shù)為__________分,眾數(shù)為______________分;
(2)學(xué)校規(guī)定:兩次月考的平均成績作為平時成績,求小明本學(xué)期的平時成績;
(3)如果本學(xué)期的總評成績按照平時成績占20%、期中成績占30%、期末成績占50%計算,那么小明本學(xué)期的數(shù)學(xué)總評成績是多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,OA1=2,∠A1Ox=30°,以OA1為直角邊作Rt△OA1A2,并使∠A1OA2=60°,再以A1A2為直角邊作Rt△A1A2A3,并使∠A2A1A3=60°,再以A2A3為直角邊作Rt△A2A3A4,并使∠A3A2A4=60°,…,按此規(guī)律進行下去,則A2020的坐標(biāo)是_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com