【題目】某醫(yī)藥研究所開發(fā)一種新藥,如果成人按規(guī)定的劑量服用,據監(jiān)測:服藥后每毫升血液中含藥量y與時間t之間近似滿足如圖所示曲線:
(1)分別求出和時,y與t之間的函數關系式;
(2)據測定:每毫升血液中含藥量不少于4微克時治療疾病有效,假如某病人一天中第一次服藥為7:00,那么服藥后幾點到幾點有效?
【答案】(1) 當時,y1=12t; 當t≥時,;(2) 7:20到10:00有效.
【解析】
(1)當時,y與t成正比例函數,時,y與t是一次函數關系,利用待定系數法求解即可.
(2)利用函數的性質把y=4分別代入兩函數的解析式即可求出答案.
解:(1)當時,設y1=kt,圖象經過點(,6),
代入解得:k=12,所以y1=12t.
當t≥時,設y2=kt+b,圖象經過點(,6)和點(8,0).
代入列出方程組
解得:,所以.
(2)解:∵每毫升血液中含藥量不少于4微克時治療疾病有效,
∴把y=4代入y1=12t得:4=12t,
解得:t=,
即小時=20分鐘;7點再過20分鐘是7:20;
把y=4代入得:,
解得:t=3,7:00再過三個小時也就是10:00.
即每毫升血液中含藥量不少于4微克時是在服藥后小時到3小時內有效,即從7:20到10:00有效.
科目:初中數學 來源: 題型:
【題目】有一只拉桿式旅行箱(圖1),其側面示意圖如圖2所示.已知箱體長AB=50cm,拉桿的伸長距離最大時可達35cm,點A,B,C在同一條直線上.在箱體底端裝有圓形的滾輪⊙A,⊙A與水平地面MN相切于點D.在拉桿伸長至最大的情況下,當點B距離水平地面38cm時,點C到水平地面的距離CE為59cm.
設AF∥MN.
(1)求⊙A的半徑長;
(2)當人的手自然下垂拉旅行箱時,人感到較為舒服.某人將手自然下垂在C端拉旅行箱時,CE為80cm,=64°.求此時拉桿BC的伸長距離.(精確到1cm,參考數據:,,)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,以等邊△ABC的邊BC為直徑作⊙O,分別交AB,AC于點D,E,過點D作DF⊥AC交AC于點F.
(1)求證:DF是⊙O的切線;
(2)若等邊△ABC的邊長為8,求由、DF、EF圍成的陰影部分面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,C,D為線段AB上的兩點,M,N分別是線段AC,BD的中點.
(1)如果CD=5cm,MN=8cm,求AB的長;
(2)如果AB=a,MN=b,求CD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖, BD 是△ABC 的角平分線, AE⊥ BD ,垂足為 F ,若∠ABC=35°,∠ C=50°,則∠CDE 的度數為( )
A.35°B.40°C.45°D.50°
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中,∠B=∠C,BC=8cm,BD=6cm如果點P在線段BC上以1cm/s的速度由B點向C點運動,同時點Q在線段CA上由C點向A點運動,當一個點停止運動時,另一個點也隨之停止運動,設點Q的速度為xcm/s,則當△BPD與△CQP全等時,x=______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC,E是BC邊上的一點,連接AE,過C作CF⊥AE,垂足為F,過B作BD⊥BC交CF的延長線于D.
(1)求證:△ACE≌△CBD;
(2)若BE=3,AB=6,求點E到AB的距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于點D,點P是BA延長線上一點,點O是線段AD上一點,OP=OC,
(1)求∠APO+∠DCO的度數;
(2)求證:點P在OC的垂直平分線上.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,用相同的小正方形按照某種規(guī)律進行擺放.根據圖中小正方形的排列規(guī)律,猜想第個圖中小正方形的個數為___________(用含的式子表示)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com