精英家教網 > 初中數學 > 題目詳情

【題目】如圖,正方形中,上的一點,連接,過點作,垂足為點,延長于點,連接.

(1)求證:.

(2)若正方形邊長是5,,求的長.

【答案】(1)證明見解析;(2).

【解析】分析: (1)根據ASA證明△ABE≌△BCF,可得結論;

(2)根據(1)得:△ABE≌△BCF,則CF=BE=2,最后利用勾股定理可得AF的長.

詳解:

(1)證明:∵四邊形ABCD是正方形,

AB=BC,ABE=BCF=90°,

∴∠BAE+AEB=90°,

BHAE,

∴∠BHE=90°,

∴∠AEB+EBH=90°,

∴∠BAE=EBH,

ABEBCF中,

∴△ABE≌△BCF(ASA),

AE=BF;

(2)解:∵AB=BC=5,

由(1)得:ABE≌△BCF,

CF=BE=2,

DF=5-2=3,

∵四邊形ABCD是正方形,

AB=AD=5,ADF=90°,

由勾股定理得:AF=

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】利用如圖1的二維碼可以進行身份識別.某校建立了一個身份識別系統(tǒng),圖2是某個學生的識別圖案,黑色小正方形表示1,白色小正方形表示0,將第一行數字從左到右依次記為,那么可以轉換為該生所在班級序號,其序號為(注:),如圖2第一行數字從左到右依次為0,1,01,序號為,表示該生為5班學生,那么表示7班學生的識別圖案是(

A.B.

C.D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】小淇在說明 直角三角形斜邊上的中線等于斜邊的一半是真命題,部分思路如下:如圖,在∠ACB內做∠BCD=∠B,CDAB相交于點D,…….請根據以上思路,完成證明.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在一個不透明的盒子中放有四張卡片,每張卡片上寫有一個實數,分別為2,,1.(卡片除了實數不同外,其余均相同)

(1)從盒子中隨機抽取一張卡片,請直接寫出卡片上的實數是有理數的概率;

(2)將卡片揺勻后先隨機抽出一張,再從剩下的卡片中隨機抽出一張,然后將抽取的兩張卡片上的實數相乘,請你用列表法或樹狀圖(樹形圖)法,求抽取的兩張卡片上的實數之積為整數的概率。

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】春季是傳染病多發(fā)的季節(jié),積極預防傳染病是學校高度重視的一項工作,為此,某校對學生宿舍采取噴灑藥物進行消毒.在對某宿舍進行消毒的過程中,先經過的集中藥物噴灑,再封閉宿舍,然后打開門窗進行通風,室內每立方米空氣中含藥量與藥物在空氣中的持續(xù)時間之間的函數關系,在打開門窗通風前分別滿足兩個一次函數,在通風后又成反比例,如圖所示.下面四個選項中錯誤的是(

A. 經過集中噴灑藥物,室內空氣中的含藥量最高達到

B. 室內空氣中的含藥量不低于的持續(xù)時間達到了

C. 當室內空氣中的含藥量不低于且持續(xù)時間不低于35分鐘,才能有效殺滅某種傳染病毒.此次消毒完全有效

D. 當室內空氣中的含藥量低于時,對人體才是安全的,所以從室內空氣中的含藥量達到開始,需經過后,學生才能進入室內

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】建設中的大外環(huán)路是我市的一項重點民生工程.某工程公司承建的一段路基工程的施工土方量為120萬立方,原計劃由公司的甲、乙兩個工程隊從公路的兩端同時相向施工150天完成.由于特殊情況需要,公司抽調甲隊外援施工,由乙隊先單獨施工40天后甲隊返回,兩隊又共同施工了110天,這時甲乙兩隊共完成土方量103.2萬立方.

(1)問甲、乙兩隊原計劃平均每天的施工土方量分別為多少萬立方?

(2)在抽調甲隊外援施工的情況下,為了保證150天完成任務,公司為乙隊新購進了一批機械來提高效率,那么乙隊平均每天的施工土方量至少要比原來提高多少萬立方才能保證按時完成任務?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】為了解市民對垃圾分類知識的知曉程度,某數學學習興趣小組對市民進行隨機抽樣的問卷調查,調查結果分為.非常了解、.了解、.基本了解、.不太了解四個等級進行統(tǒng)計,并將統(tǒng)計結果繪制成如下兩幅不完整的統(tǒng)計圖(1,2),請根據圖中的信息解答下列問題.

(1)這次調查的市民人數為 ,2, ;

(2)補全圖1中的條形統(tǒng)計圖;

(3)在圖2中的扇形統(tǒng)計圖中,.基本了解所在扇形的圓心角度數;

(4)據統(tǒng)計,2018年該市約有市民500萬人,那么根據抽樣調查的結果,可估計對垃圾分類知識的知曉程度為.不太了解的市民約有多少萬人?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB8,AD4,點EF分別在線段ADAB上,將AEF沿EF翻折,使得點A落在矩形ABCD部的P點,連接PD,當PDE是等邊三角形時,BF的長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】將一幅三角板拼成如圖所示的圖形,過點CCF平分∠DCEDE于點F

1)求證:CF∥AB

2)求∠DFC的度數.

查看答案和解析>>

同步練習冊答案