【題目】已知,如圖,反比例函數(shù)y=的圖象與一次函數(shù)y=ax+b的圖象交于點A(1,4),點B(m,﹣1).
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)求△OAB的面積;
(3)直接寫出不等式ax+b≥的解集是 .
【答案】(1)y=x+3;(2);(3)﹣4≤x<0或x≥1.
【解析】
(1)先把A點坐標代入y=的求出k,得到反比例函數(shù)解析式為y=,再利用反比例函數(shù)解析式確定B點坐標,然后利用待定系數(shù)法求一次函數(shù)解析式;
(2)根據(jù)一次函數(shù)y=ax+b的解析式求得點C的坐標,然后利用∴S△OAB=S△OAC+S△OBC計算即可;
(3)根據(jù)圖象得出取值范圍即可.
解:(1)∵y=函數(shù)的圖象過點A(1,4),
∴k=4,即y=,
又∵點B(m,﹣1)在y=上,
∴m=﹣4,
∴B(﹣4,﹣1),
又∵一次函數(shù)y=ax+b過A、B兩點,
即,
解得:,
∴y=x+3;
(2)由y=x+3可知C(﹣3,0),
∴S△OAB=S△OAC+S△OBC=×3×4+×3×1=.
(3)根據(jù)圖象可得:不等式ax+b≥的解為:﹣4≤x<0或x≥1.
故答案為:﹣4≤x<0或x≥1.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,關于的二次函數(shù)的圖像與軸交于點和點,與軸交于點,拋物線的對稱軸與軸交于點.
(1)求二次函數(shù)的表達式;
(2)在軸上是否存在一點,使為等腰三角形?若存在,請求出點的坐標;
(3)有一個點從點出發(fā),以每秒1個單位的速度在上向點運動,另一個點從點與點同時出發(fā),以每秒2個單位的速度在拋物線的對稱軸上運動,當點到達點時,點、同時停止運動,問點、運動到何處時,面積最大,試求出最大面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,對角線AC與BD相交于點O,∠CAB=∠ACB,過點B作BE⊥AB交AC于點E.
(1)求證:AC⊥BD;
(2)若AB=14,cos∠CAB=,求線段OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△AOB的直角邊OA在x軸上,OA=2,AB=1,將Rt△AOB繞點O逆時針旋轉(zhuǎn)90°得到Rt△COD,拋物線經(jīng)過B、D兩點.
(1)求二次函數(shù)的解析式;
(2)連接BD,點P是拋物線上一點,直線OP把△BOD的周長分成相等的兩部分,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于反比例函數(shù)y=(k≠0),下列所給的四個結論中,正確的是( 。
A. 若點(3,6)在其圖象上,則(﹣3,6)也在其圖象上
B. 當k>0時,y隨x的增大而減小
C. 過圖象上任一點P作x軸、y軸的線,垂足分別A、B,則矩形OAPB的面積為k
D. 反比例函數(shù)的圖象關于直線y=﹣x成軸對稱
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,四邊形OABC是矩形,四邊形ADEF是正方形,點A,D在x軸的正半軸上,點C在y軸的正半軸上,點F在AB上,點B、E在反比例函數(shù)y=(x>0)的圖象上,正方形ADEF的面積為9,且BF=AF,則k值為( )
A. 15 B. C. D. 17
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】足球運動員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度(單位:)與足球被踢出后經(jīng)過的時間(單位:)之間的關系如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … | |
0 | 8 | 14 | 18 | 20 | 20 | 18 | 14 | … |
下列結論:①足球距離地面的最大高度為;②足球飛行路線的對稱軸是直線;③足球被踢出時落地;④足球被踢出時,距離地面的高度是.
其中正確結論的個數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】國家海洋局將中國釣魚島最高峰命名為“高華峰”,并對釣魚島進行常態(tài)化立體巡航.如圖1,在一次巡航過程中,巡航飛機飛行高度為2001米,在點A測得高華峰頂F點的俯角為30°,保持方向不變前進1200米到達B點后測得F點俯角為45°,如圖2.請據(jù)此計算釣魚島的最高海拔高度多少米.(結果保留整數(shù),參考數(shù)值:=1.732,=1.414)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com