【題目】在銳角△ABC中,AB=4,BC=5,∠ACB=45°,將△ABC繞點B按逆時針方向旋轉(zhuǎn),得到 △A1BC1.
(1)如圖1,當(dāng)點C1在線段CA的延長線上時,求∠CC1A1的度數(shù);
(2)如圖2,連接AA1,CC1.若△ABA1的面積為4,求△CBC1的面積;
(3)如圖3,點E為線段AB中點,點P是線段AC上的動點,在△ABC 繞點 B 按逆時針方向旋轉(zhuǎn)過程中,點P的對應(yīng)點是點P1,求線段EP1長度的最大值與最小值.
【答案】(1)90°;(2);(3),7.
【解析】試題分析:(1)由旋轉(zhuǎn)的性質(zhì)可得:∠A1C1B=∠ACB=45°,BC=BC1,根據(jù)等邊對等角得到∠CC1B=∠C1CB=45°,根據(jù)∠CC1A1=∠CC1B+∠A1C1B得解;
(2)通過證明△ABA1∽△CBC1,利用相似三角形的面積比等于相似比的平方得到,,據(jù)此解得△CBC1的面積;
(3)過點B作BD⊥AC,D為垂足,求得BD=,①當(dāng)P在AC上運動至垂足點D,使點P的對應(yīng)點P1在線段AB上時,EP1=BP1﹣BE;②當(dāng)P在AC上運動至點C,使點P的對應(yīng)點P1在線段AB的延長線上時,EP1最大,EP1=BC+BE.
試題解析:解:(1)∵由旋轉(zhuǎn)的性質(zhì)可得:∠A1C1B=∠ACB=45°,BC=BC1,
∴∠CC1B=∠C1CB=45°,
∴∠CC1A1=∠CC1B+∠A1C1B=45°+45°=90°;
(2)∵由旋轉(zhuǎn)的性質(zhì)可得:△ABC≌△A1BC1,
∴BA=BA1,BC=BC1,∠ABC=∠A1BC1,
∴,∠ABC+∠ABC1=∠A1BC1+∠ABC1,
∴∠ABA1=∠CBC1,
∴△ABA1∽△CBC1,
∴,
∵S△ABA1=4,∴S△CBC1=.
(3)過點B作BD⊥AC,D為垂足,
∵△ABC為銳角三角形,∴點D在線段AC上,
在Rt△BCD中,BD=BC×sin45°=,
①如圖1,當(dāng)P在AC上運動至垂足點D,△ABC繞點B旋轉(zhuǎn),使點P的對應(yīng)點P1在線段AB上時,EP1最。钚≈禐椋EP1=BP1﹣BE=BD﹣BE=﹣2.
②如圖2,當(dāng)P在AC上運動至點C,△ABC繞點B旋轉(zhuǎn),使點P的對應(yīng)點P1在線段AB的延長線上時,EP1最大,最大值為:EP1=BC+BE=5+2=7.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形紙片ABCD中,AB=2,∠A=60°,將菱形紙片翻折,使點A落在CD的中點E處,折痕為FG,點F、G分別在邊AB、AD上.則cos∠EFG的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過正方形ABCD的頂點D作DE∥AC交BC的延長線于點E.
(1)判斷四邊形ACED的形狀,并說明理由;
(2)若BD=8cm,求線段BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD為矩形紙片,把紙片ABCD折疊,使點B恰好落在CD邊的中點E處, 折痕為AF,若CD=6,則AF等于__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司銷售一種進價為20元/個的計算器,其銷售量y(萬個)與銷售價格x(元/個) 的變化如下表:同時,銷售過程中的其他開支(不含進價)總計40萬元.
銷售價格x(元/個) | … | 30 | 40 | 50 | 60 | … |
銷售量y(萬個) | … | 5 | 4 | 3 | 2 | … |
(1)觀察并分析表中的數(shù)據(jù),用所學(xué)過的函數(shù)知識,直接寫出y與 x的函數(shù)解析式;
(2)求出該公司銷售這種計算器的凈得利潤z(萬元)與銷售價格 x(元/個) 的函數(shù)解析式,銷售價格定為多少元時凈得利潤最大,最大值是多少?
(3)該公司要求凈得利潤不能低于40萬元,請你結(jié)合函數(shù)圖象求出銷售價格 x(元/個) 的取值范圍,若還需考慮銷售量盡可能大,銷售價格應(yīng)定為多少元 ?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)軸是學(xué)習(xí)初中數(shù)學(xué)的- -個重要工具利用數(shù)軸可以將數(shù)與形完美地結(jié)合.研究數(shù)軸我們發(fā)現(xiàn)了許多重要的規(guī)律:數(shù)軸上點、點表示的數(shù)為,則兩點之間的距離,若,則可簡化為;線段的中點表示的數(shù)為如圖,已知數(shù)軸上有兩點,分別表示的數(shù)為,點以每秒個單位長度的速度沿數(shù)軸向右勻速運動,點以每秒個單位長度向左勻速運動,設(shè)運動時間為秒.
(1)運動開始前,兩點的距離為多少個單位長度;線段的中點所表示的數(shù)為?
(2)點運動秒后所在位置的點表示的數(shù)為 ;點 運動秒后所在位置的點表示的數(shù)為 . (用含的式子表示
(3)它們按上述方式運動,兩點經(jīng)過多少秒會相距個單位長度?
(4)若按上述方式運動, 兩點經(jīng)過多少秒,線段的中點與原點重合?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個等腰直角三角形如圖放置,∠B=∠CAD=90°,AB=BC=cm,AC=AD,垂直于CD的直線a從點C出發(fā),以每秒cm的速度沿CD方向勻速平移,與CD交于點E,與折線BAD交于點F;與此同時,點G從點D出發(fā),以每秒1cm的速度沿著DA的方向運動;當(dāng)點G落在直線a上,點G與直線a同時停止運動;設(shè)運動時間為t秒(t>0).
(1)填空:CD=_______cm;
(2)連接EG、FG,設(shè)△EFG的面積為y,求y與t之間的函數(shù)關(guān)系式,并寫出相應(yīng)t的取值范圍;
(3)是否存在某一時刻t(0<t<2),作∠ADC的平分線DM交EF于點M,是否存在點M是EF的中點?若存在,求此時的t值;若不存在,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點,過點A作AF∥BC交BE的延長線于F,連接CF,求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為6的正方形,點E在邊AB上,BE=4,過點E作EF∥BC,分別交BD、CD于G、F兩點.若M、N分別是DG、CE的中點,則MN的長為 ( )
A. 3 B. C. D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com