【題目】如圖,在平面直角坐標(biāo)系中,線段是由線段AB平移得到的,已知A、B兩點(diǎn)的坐標(biāo)分別為A(—2,3),B(—3,1)若的坐標(biāo)為(3,4).

1的坐標(biāo)為 ;

2)若線段AB上一點(diǎn)P的坐標(biāo)為(,),則點(diǎn)P的對(duì)應(yīng)點(diǎn)的坐標(biāo)

【答案】1)(2,2);(2)(+5,+1).

【解析】

1)直接利用平移點(diǎn)A的變化規(guī)律求解即可.
(2) 直接利用平移中點(diǎn)A的變化規(guī)律求解即可.

解:線段AB平移到線段后,點(diǎn)A相應(yīng)地移動(dòng)到了點(diǎn),點(diǎn)B移動(dòng)到了點(diǎn).由于A-23),34),可知平移規(guī)律是把A-2,3)向右平移5個(gè)單位,再向上平移1個(gè)單位.由于線段AB是整體移動(dòng)的,故點(diǎn)BP也向右平移5個(gè)單位,再向上平移1個(gè)單位,根據(jù)平移規(guī)律得:

1B-3,1)平移后對(duì)應(yīng)點(diǎn)的坐標(biāo)為(22);

2P)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(+5,+1).

故答案為:(2,2);(+5,+1).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABCCED均為等邊三角形,且B,C,D三點(diǎn)共線.線段BE,AD相交于點(diǎn)O,AFBE于點(diǎn)F.若OF=1,則AF的長(zhǎng)為( 。

A. 1 B. C. D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于點(diǎn)D,PC=4,PD的長(zhǎng)為(  )

A. 2 B. 3 C. 4 D. 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)二樓擺出一臺(tái)游戲裝置如圖所示,小球從最上方入口處投入,每次遇到黑色障礙物,等可能地向左或向右邊落下.

(1)若樂樂投入一個(gè)小球,則小球落入B區(qū)域的概率為
(2)若樂樂先后投兩個(gè)小球,求兩個(gè)小球同時(shí)落在A區(qū)域的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠B=90°,ABCD,MBC邊上的一點(diǎn),且AM平分∠BAD,DM平分∠ADC.

求證:(1)AMDM;

(2)MBC的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,且、、.將其平移后得到,若的對(duì)應(yīng)點(diǎn)是,的對(duì)應(yīng)點(diǎn)的坐標(biāo)是

1)在平面直角坐標(biāo)系中畫出;

2)此次平移也可看作_________平移________個(gè)單位長(zhǎng)度,再向__________平移了________個(gè)單位長(zhǎng)度得到;

3)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,對(duì)角線AC、BD相交于點(diǎn)O.

⑴若AB=BC,則_______.

⑵若AC=BD,則_________.

⑶若∠BCD=90°,則_________.

⑷若OA=OB,且OAOB,則_________.

⑸若AB=BC,且AC=BD,則_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,折疊矩形ABCD的一邊AD,使點(diǎn)D落在BC邊的點(diǎn)F處,已知折痕AE=5 cm,且tan∠EFC= ,則矩形ABCD的周長(zhǎng)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,∠A被平行直線l1、l2所截,若∠1=100°,∠2=125°,則∠A的度數(shù)是( ).

A.25°
B.30°
C.35°
D.45°

查看答案和解析>>

同步練習(xí)冊(cè)答案