【題目】如圖,已知平面直角坐標系中有點A(1,1),B(1,5),C(3,1),且雙曲線y= 與△ABC有公共點,則k的取值范圍是(
A.1≤k≤3
B.3≤k≤5
C.1≤k≤5
D.1≤k≤

【答案】D
【解析】解:若雙曲線與△ABC有公共點,則雙曲線向下最多到點a,向上最多到與直線AB只有一個交點,
當過點A時,把A點坐標代入雙曲線解析式可得1= ,解得k=1;
當雙曲線與直線BC只有一個交點時,設直線AB解析式為y=ax+b,
∵B(1,5),C(3,1),
∴把A、B兩點坐標代入可得 ,解得 ,
∴直線AB的解析式為y=﹣2x+7,
聯(lián)立直線AB和雙曲線解析式得到 ,消去y整理可得2x2﹣7x+k=0,
則該方程有兩個相等的實數(shù)根,
∴△=0,即(﹣7)2﹣8k=0,解得k= ,
∴k的取值范圍為:1≤k≤
故選D.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1) (2)

(3)(-2)-(+4.7)-(-0.4)+ (-3.3) (4)

(5) (6)(-+)×(-36)

(7) (8)—(用簡便方法計算)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓柱形玻璃容器高19cm,底面周長為60cm,在外側距下底1.5cm的點A處有一只蜘蛛,在蜘蛛正對面的圓柱形容器的外側,距上底1.5cm處的點B處有一只蒼蠅,蜘蛛急于捕捉蒼蠅充饑,請你幫蜘蛛計算它沿容器側面爬行的最短距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把下列各數(shù)分別填在相應的集合里:

5, 0, 3.14 ,20161.99, (6)

1)正數(shù)集合:{ };

2)負數(shù)集合:{ }

3)整數(shù)集合;{ };

4)分數(shù)集合:{ }.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,E是AB上一點,BE=2,AE=3,P是AC上一動點,則PB+PE的最小值是( ).

A. 5 B. 5 C. 6 D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10,點D是邊BC上一動點 (不與B,C重合),∠ADE=∠B=α,DE交AC于點E,且 .下列結論: ①△ADE∽△ACD;
②當BD=6時,△ABD與△DCE全等;
③△DCE為直角三角形時,BD為8或 ;
④CD2=CECA.
其中正確的結論是(把你認為正確結論的序號都填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,數(shù)軸上點A表示的數(shù)為﹣2,點B表示的數(shù)為8,點P從點A出發(fā),以每秒3個單位長度的速度沿數(shù)軸向右勻速運動,同時點Q從點B出發(fā),以每秒2個單位長度的速度向左勻速運動.設運動時間為t秒(t>0).

(1)填空:

①A、B兩點間的距離AB=   ,線段AB的中點表示的數(shù)為   ;

②用含t的代數(shù)式表示:t秒后,點P表示的數(shù)為   ;點Q表示的數(shù)為   

(2)求當t為何值時,PQ=AB;

(3)當點P運動到點B的右側時,PA的中點為M,NPB的三等分點且靠近于P點,求PM﹣BN的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著人民生活水平的提高,購買老年代步車的人越來越多.這些老年代步車卻成為交通安全的一大隱患.針對這種現(xiàn)象,某校數(shù)學興趣小組在《老年代步車現(xiàn)象的調(diào)查報告》中就“你認為對老年代步車最有效的管理措施”隨機對某社區(qū)部分居民進行了問卷調(diào)查,其中調(diào)查問卷設置以下選項(只選一項):

A:加強交通法規(guī)學習;

B:實行牌照管理;

C:加大交通違法處罰力度;

D:納入機動車管理;

E:分時間分路段限行

調(diào)查數(shù)據(jù)的部分統(tǒng)計結果如下表:

管理措施

回答人數(shù)

百分比

A

25

5%

B

100

m

C

75

15%

D

n

35%

E

125

25%

合計

a

100%

(1)根據(jù)上述統(tǒng)計表中的數(shù)據(jù)可得m=_____,n=_____,a=_____;

(2)在答題卡中,補全條形統(tǒng)計圖;

(3)該社區(qū)有居民2600人,根據(jù)上述調(diào)查結果,請你估計選擇“D:納入機動車管理”的居民約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形OABCB(4,4),E,F(xiàn)分別在邊BC,BA,OE=,若∠EOF=45°,OF的解析式為 (  )

A. y=x B. y=x C. y=x D. y=x

查看答案和解析>>

同步練習冊答案