【題目】如果拋物線C1的頂點(diǎn)在拋物線C2上,同時(shí),拋物線C2的頂點(diǎn)在拋物線C1上,那么,我們稱拋物線C1與拋物線C2互相依存.
(1)已知拋物線①:y=﹣2x2+4x+3與拋物線②:y=2x2+4x﹣1,請(qǐng)判斷拋物線①與拋物線②是否互相依存,并說明理由.
(2)將拋物線C1:y=﹣2x2+4x+3沿x軸翻折,再向右平移m(m>0)個(gè)單位,得到拋物線C2,若拋物線C1與C2互相依存,求m的值.
(3)試問:如果對(duì)稱軸不同的兩條拋物線(二次函數(shù)圖象)互相依存,那么它們的函數(shù)表達(dá)式中的二次項(xiàng)系數(shù)之間有什么數(shù)量關(guān)系?請(qǐng)說明理由.
【答案】(1)拋物線①與拋物線②相互依存(2) (3)0
【解析】
(1)根據(jù)兩拋物線的關(guān)聯(lián)依次判斷即可;
(2)根據(jù)兩拋物線關(guān)聯(lián)的定義直接列式得出結(jié)論;
(3)設(shè)互相依存的一條拋物線為y1=a1(x﹣m1)2+n1
另一條拋物線為y2=a2(x﹣m2)2+n2,分別代入頂點(diǎn),兩式相加.
(1)由拋物線①知,y=﹣2x2+4x+3=﹣2(x﹣1)2+5,頂點(diǎn)坐標(biāo)為(1,5),
把x=1代入拋物線②:y=2x2+4x﹣1,得y=5,
∴拋物線①的頂點(diǎn)在拋物線②上,
又由拋物線②知,y=2(x+1)2﹣3,頂點(diǎn)坐標(biāo)為(﹣1,﹣3),
把x=﹣1代入拋物線①中,得,y=﹣3,
∴拋物線②的頂點(diǎn)在拋物線①上,
∴拋物線①與拋物線②相互依存.
(2)由拋物線①:y=﹣2(x﹣1)2+5,沿x軸翻折后為y=2(x﹣1)2﹣5,
設(shè)平移后的拋物線解析式為y=2(x﹣1﹣m)2﹣5,
把x=1,y=5代入得2(1﹣1﹣m)2﹣5=5,
∴m=±;
∵m>0,
∴m=,
∴當(dāng)m= 時(shí),得到拋物線C2:y=2(x﹣1﹣)2﹣5,頂點(diǎn)為(1+,﹣5),
把x=1+代入拋物線C1,得y=﹣5,
∴m=;
(3)它們的二次項(xiàng)系數(shù)互為相反數(shù),理由如下:
設(shè)互相依存的一條拋物線為y1=a1(x﹣m1)2+n1,頂點(diǎn)為(m1,n1)
另一條拋物線為y2=a2(x﹣m2)2+n2,頂點(diǎn)為(m2,n2),其中m1≠m2,
∴把(m2,n2)代入y1,得n2=a1(m2﹣m1)2+n1,①
把(m1,n1)代入y2,得n1=a2(m1﹣m2)2+n2②
由①+②得,a1(m2﹣m1)2+a2(m1﹣m2)2=0
∵m1≠m2,
∴a1+a2=0.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的一元二次方程x2+(k﹣5)x+1﹣k=0(其中k為常數(shù)).
(1)求證無(wú)論k為何值,方程總有兩個(gè)不相等實(shí)數(shù)根;
(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經(jīng)過第三象限,求k的取值范圍;
(3)若原方程的一個(gè)根大于3,另一個(gè)根小于3,求k的最大整數(shù)值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是⊙O的直徑,點(diǎn)D是⊙O 上一點(diǎn),⊙O的切線CB與AD的延長(zhǎng)線交于點(diǎn)B,點(diǎn)F是直徑AC上一點(diǎn),連接DF并延長(zhǎng)交⊙O于點(diǎn)E,連接AE.
(1)求證:∠ABC=∠AED;
(2)連接BF,若AD=,AF=6,tan∠AED=,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商貿(mào)公司有、兩種型號(hào)的商品需運(yùn)出,這兩種商品的體積和質(zhì)量分別如下表所示:
體積(立方米/件) | 質(zhì)量(噸/件) | |
型商品 | 0.8 | 0.5 |
型商品 | 2 | 1 |
(1)已知一批商品有、兩種型號(hào),體積一共是20立方米,質(zhì)量一共是10.5噸,求、兩種型號(hào)商品各有幾件?
(2)物資公司現(xiàn)有可供使用的貨車每輛額定載重3.5噸,容積為6立方米,其收費(fèi)方式有以下兩種:
①按車收費(fèi):每輛車運(yùn)輸貨物到目的地收費(fèi)600元;
②按噸收費(fèi):每噸貨物運(yùn)輸?shù)侥康牡厥召M(fèi)200元.
現(xiàn)要將(1)中商品一次或分批運(yùn)輸?shù)侥康牡,如果兩種收費(fèi)方式可混合使用,商貿(mào)公司應(yīng)如何選擇運(yùn)送、付費(fèi)方式,使其所花運(yùn)費(fèi)最少,最少運(yùn)費(fèi)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)不透明的布袋中裝有4個(gè)只有顏色不同的球,其中1個(gè)黃球、1個(gè)藍(lán)球、2個(gè)紅球.
(1)任意摸出1個(gè)球,記下顏色后不放回,再任意摸出1個(gè)球.求兩次摸出的球恰好都是紅球的概率(要求畫樹狀圖或列表);
(2)現(xiàn)再將n個(gè)黃球放入布袋,攪勻后,使任意摸出1個(gè)球是黃球的概率為,求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】近年來(lái)網(wǎng)約車十分流行,初三某班學(xué)生對(duì)“美團(tuán)”和“滴滴”兩家網(wǎng)約車公司各10名司機(jī)月收入進(jìn)行了一項(xiàng)抽樣調(diào)查,司機(jī)月收入(單位:千元)如圖所示:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均月收入/千元 | 中位數(shù)/千元 | 眾數(shù)/千元 | 方差/千元2 | |
“美團(tuán)” | ① | 6 | 6 | 1.2 |
“滴滴” | 6 | ② | 4 | ③ |
(1)完成表格填空;
(2)若從兩家公司中選擇一家做網(wǎng)約車司機(jī),你會(huì)選哪家公司,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(類比概念)三角形的內(nèi)切圓是以三個(gè)內(nèi)角的平分線的交點(diǎn)為圓心,以這點(diǎn)到三邊的距離為半徑的圓,則三角形可以稱為圓的外切三角形,可以得出三角形的三邊與該圓相切.以此類推,如圖1,各邊都和圓相切的四邊形稱為圓外切四邊形
(性質(zhì)探究)如圖1,試探究圓外切四邊形的ABCD兩組對(duì)邊AB,CD與BC,AD之間的數(shù)量關(guān)系
猜想結(jié)論: (要求用文字語(yǔ)言敘述)
寫出證明過程(利用圖1,寫出已知、求證、證明)
(性質(zhì)應(yīng)用)
①初中學(xué)過的下列四邊形中哪些是圓外切四邊形 (填序號(hào))
A:平行四邊形:B:菱形:C:矩形;D:正方形
②如圖2,圓外切四邊形ABCD,且AB=12,CD=8,則四邊形的周長(zhǎng)是 .
③圓外切四邊形的周長(zhǎng)為48cm,相鄰的三條邊的比為5:4:7,求四邊形各邊的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是⊙O的直徑,D為⊙O上一點(diǎn),OD⊥AC,垂足為E,連接BD.
(1)求證:BD平分∠ABC;
(2) 當(dāng)∠ODB=30°時(shí),求證:BC=OD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)E、F分別在BC、CD上移動(dòng),但A到EF的距離AH始終保持與AB長(zhǎng)相等,問在E、F移動(dòng)過程中:
(1)∠EAF的大小是否有變化?請(qǐng)說明理由.
(2)△ECF的周長(zhǎng)是否有變化?請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com