如圖,四邊形ABCD中,AD=CD,∠DAB=∠ACB=90°,過(guò)點(diǎn)D作DE⊥AC,垂足為F,DE與AB相交于點(diǎn)E.
(1)求證:AB·AF=CB·CD;
(2)已知AB=15 cm,BC=9 cm,P是射線(xiàn)DE上的動(dòng)點(diǎn).設(shè)DP=x cm(),四邊形BCDP的面積為y cm2
①求y關(guān)于x的函數(shù)關(guān)系式;
②當(dāng)x為何值時(shí),△PBC的周長(zhǎng)最小,并求出此時(shí)y的值.
證明:(1)∵,,∴DE垂直平分AC,
,∠DFA=∠DFC =90°,∠DAF=∠DCF.
∵∠DAB=∠DAF+∠CAB=90°,∠CAB+∠B=90°,
∴∠DCF=∠DAF=∠B.
∴△DCF∽△ABC.
,即
∴AB·AF=CB·CD.
(2)解:①∵AB=15,BC=9,∠ACB=90°,
,∴
).
②∵BC=9(定值),∴△PBC的周長(zhǎng)最小,就是PB+PC最。桑1)知,點(diǎn)C關(guān)于直線(xiàn)DE的對(duì)稱(chēng)點(diǎn)是點(diǎn)A,∴PB+PC=PB+PA,故只要求PB+PA最。
顯然當(dāng)P、A、B三點(diǎn)共線(xiàn)時(shí)PB+PA最。
此時(shí)DP=DE,PB+PA=AB.
由(1),,,得△DAF∽△ABC.
EF∥BC,得,EF=
∴AF∶BC=AD∶AB,即6∶9=AD∶15.
∴AD=10.
Rt△ADF中,AD=10,AF=6,
∴DF=8.

∴當(dāng)時(shí),△PBC的周長(zhǎng)最小,此時(shí)
(1)根據(jù)已知可得到∠BAC=∠ADF和∠DFA=∠ACB,從而利用有兩對(duì)角對(duì)應(yīng)相等的兩三角形相似,得到△DFA∽△ACB,根據(jù)相似三角形的對(duì)應(yīng)邊成比例及AD=CD即可推出AB•AF=CB•CD;
(2)①根據(jù)勾股定理求出AC的長(zhǎng),從而求得CF的長(zhǎng),根據(jù)題意四邊形BCDP是梯形,根據(jù)梯形的面積公式即可得到求y關(guān)于x的函數(shù)關(guān)系式;②根據(jù)兩點(diǎn)之間線(xiàn)段最短,當(dāng)點(diǎn)P在AB上時(shí),PA+PB最小即點(diǎn)P與E重合時(shí),△PBC周長(zhǎng)最小,從而利用勾股定理分別求得AC、AF、AE、DE的長(zhǎng),從而就求得了x的值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖I是△ABC的內(nèi)心,AI的延長(zhǎng)線(xiàn)交邊BC于點(diǎn)D,交△ABC的外接圓于點(diǎn)E(1)BE與IE相等嗎?為什么?(2)試說(shuō)明IE是AE和DE的比例中項(xiàng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

正方形的邊長(zhǎng)為4,分別是、上的兩個(gè)動(dòng)點(diǎn),當(dāng)點(diǎn)在上運(yùn)動(dòng)時(shí),始終保持垂直,

(1)證明:;
(2)設(shè),梯形的面積為,求之間的函數(shù)關(guān)系式;當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),四邊形面積最大,并求出最大面積;
(3)當(dāng)點(diǎn)運(yùn)動(dòng)到什么位置時(shí),?并求出此時(shí)BM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知:如圖,,,以為位似中心,按比例尺,把縮小,則點(diǎn)的對(duì)應(yīng)點(diǎn)的坐標(biāo)為(   )
A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖所示,已知四邊形ABCD是正方形,E是CD的中點(diǎn),P是BC邊上的一點(diǎn),下列條件中,可以推出△ABP與△ECP相似的有_______。
①∠APB=∠EPC;②∠APE的平分線(xiàn)垂直于BC;③P是BC的中點(diǎn);④BP:BC=2:3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1, 矩形鐵片ABCD中,AD="8," AB="4;" 為了要讓鐵片能穿過(guò)直徑為3.8的圓孔, 需對(duì)鐵片進(jìn)行處理 (規(guī)定鐵片與圓孔有接觸時(shí)鐵片不能穿過(guò)圓孔).
(1)直接寫(xiě)出矩形鐵片ABCD的面積           ;
(2)如圖2, M、N、P、Q分別是AD、AB、BC、CD的中點(diǎn),將矩形鐵片的四個(gè)角去掉.
①證明四邊形MNPQ是菱形;
②請(qǐng)你通過(guò)計(jì)算說(shuō)明四邊形鐵片MNPQ能穿過(guò)圓孔.
(3)如圖3, 過(guò)矩形鐵片ABCD的中心作一條直線(xiàn)分別交邊BC、AD于點(diǎn)E、F(不與端點(diǎn)重合), 沿著這條直線(xiàn)將矩形鐵片切割成兩個(gè)全等的直角梯形鐵片.當(dāng)BE=DF=1時(shí),判斷直角梯形鐵片EBAF能否穿過(guò)圓孔, 并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在直角坐標(biāo)系中有兩點(diǎn)A(4,0)、B(0,2),如果點(diǎn)C在x軸上(C與A不重合),當(dāng)點(diǎn)C的坐標(biāo)為         時(shí),使得由點(diǎn)B、O、C組成的三角形與△AOB相似(至少找出兩個(gè)滿(mǎn)足條件的點(diǎn)的坐標(biāo)).
                                                          

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在相同時(shí)刻的物高與影長(zhǎng)成正比.如果高為1.5m的竹竿的影長(zhǎng)為2.5m,那么影長(zhǎng)為30m旗桿的高是
A.15mB.16mC.18mD.20m

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖, ΔABC經(jīng)過(guò)相似變換得ΔDEF若∠ABC=20°,∠BCA=40°,AB :DE=2 :1,
則∠EDF的度數(shù)是      

查看答案和解析>>

同步練習(xí)冊(cè)答案