【題目】某商場銷售喜羊羊玩具,預測該產(chǎn)品能夠暢銷,就用32000元購進了一批這種玩具,上市后很快脫銷,商場又用68000元購進第二批這種玩具,所購數(shù)量是第一批購進數(shù)量的2倍,但每個進價多了10元.

(1)該商場兩次共購進這種玩具多少個?

(2)如果這兩批玩具每套的售價相同,且全部售完后總利潤率不低于20%,那么每件售價至少是多少元?(利潤率

【答案】(1)600個;(2)至少200

【解析】試題分析:(1)設商場第一次購進套運動服,根據(jù)第二批所購數(shù)量是第一批購進數(shù)量的2倍,但每套進價多了10即可列方程求解;

2)設每套運動服的售價為元,根據(jù)這兩批運動服每套的售價相同,且全部售完后總利潤率不低于20%” 即可列不等式求解.

1)設商場第一次購進套運動服,由題意得

解這個方程,得

經(jīng)檢驗,是所列方程的根

答:商場兩次共購進這種運動服600套;

2)設每套運動服的售價為元,由題意得

解這個不等式,得

答:每套運動服的售價至少是200元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下面材料:
小昊遇到這樣一個問題:如圖1,在△ABC中,∠ACB=90°,BE是AC邊上的中線,點D在BC邊上,CD:BD=1:2,AD與BE相交于點P,求 的值.

(1)小昊發(fā)現(xiàn),過點A作AF∥BC,交BE的延長線于點F,通過構(gòu)造△AEF,經(jīng)過推理和計算能夠使問題得到解決(如圖2).
請回答: 的值為
(2)參考小昊思考問題的方法,解決問題:
如圖3,在△ABC中,∠ACB=90°,點D在BC的延長線上,AD與AC邊上的中線BE的延長線交于點P,DC:BC:AC=1:2:3.
①求 的值;
(3)②若CD=2,則BP=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象經(jīng)過點A(8,0),直線y=-3x+6x軸交于點B,y軸交于點D,且兩直線交于點C(4,m).

(1)m的值及一次函數(shù)的解析式;

(2)求△ACD的面積。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】保護環(huán)境、低碳出行已漸漸成為人們的習慣.最近無為縣城又引進了共享單車,只需要交點押金,就可以通過掃描二維碼的方式解鎖一輛停在路邊的自行車,以極低的費用,輕松騎到目的地.王老師家與學校相距2km,現(xiàn)在每天騎共享單車到學校所花的時間比過去騎電動車多用4min.已知王老師騎電動車的速度是騎共享單車速度的1.5倍,則王老師騎共享單車的速度是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】今年3月12日植樹節(jié)活動中,某單位的職工分成兩個小組植樹,已知他們植樹的總數(shù)相同,均為100多棵,如果兩個小組人數(shù)不等,第一組有一人植了6棵,其他每人都植了13棵;第二組有一人植了5棵,其他每人都植了10棵,則該單位共有職工人.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】以線段AC為對角線的四邊形ABCD(它的四個頂點A,B,C,D按順時針方向排列),已知ABBCCD,ABC100°,CAD40°,則∠BCD的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】暑假期間,七(2)班的張明、王強等同學隨家長一同到某公園游玩,下面是購買門票時,張明與他爸爸的對話(如圖),試根據(jù)圖中的信息,解答下列問題:

⑴張明他們一共去了幾個成人,幾個學生?

⑵請你幫助張明算一算,用哪種方式購票(團體購票還是非團體購票)更省錢?說明理由.

⑶正要購票時,張明發(fā)現(xiàn)七(3)班的張小毛等15名同學和他們的2名家長共17人也來購票,請你為他們設計出最省的購票方案,并求出此時的購票費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x1是關于x的一元二次方程ax2+bx+c=0(a≠0)的一個根,記△=b2﹣4ac,M=(2ax1+b)2 , 則關于△與M大小關系的下列說法中,正確的是(
A.△>M
B.△=M
C.△<M
D.無法確定△與M的大小

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們知道1+2+3+…+=,則1+2+3+…+10= ___________ .

[問題提出] 那么 的結(jié)果等于多少呢?

[閱讀理解] 在圖1所示的三角形數(shù)陣中,第1行圓圈中的數(shù)為1,即12 ;第2行兩個圓圈中數(shù)的和為2+2,即22;......;第nn個圓圈中數(shù)的和為n+n+n n2;這樣,該三角形數(shù)陣中共有____ 個圓圈,所有圓圈中數(shù)的和可表示為_________________ .

1

[規(guī)律探究] 將三角形數(shù)陣經(jīng)兩次旋轉(zhuǎn)可得如圖2所示的三角形數(shù)陣,觀察這三個三角形數(shù)陣各行同一位置圓圈中的數(shù)(如第n-1行的第一個圓圈中的數(shù)分別為n-1,2,n)發(fā)現(xiàn)每個位置上三個圓圈中的數(shù)的和均為______________.由此可得,這三個三角形數(shù)陣所有圓圈中數(shù)的總和為:

3( )=_________________.因此, =__________.

2

[問題解決]

(1).根據(jù)以上規(guī)律可得 __________________.

(2).試計算 ,請寫出計算步驟.

查看答案和解析>>

同步練習冊答案