【題目】已知x1是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的一個根,記△=b2﹣4ac,M=(2ax1+b)2 , 則關(guān)于△與M大小關(guān)系的下列說法中,正確的是(
A.△>M
B.△=M
C.△<M
D.無法確定△與M的大小

【答案】B
【解析】解:∵x1是關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的一個根, ∴ax12+bx1+c=0,
∴ax12+bx1=﹣c,
∴M=(2ax1+b)2= =4a(ax12+bx1)+b2=4a÷(﹣c)+b2=b2﹣4ac=△,
故選B.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解求根公式的相關(guān)知識,掌握根的判別式△=b2-4ac,這里可以分為3種情況:1、當(dāng)△>0時,一元二次方程有2個不相等的實(shí)數(shù)根2、當(dāng)△=0時,一元二次方程有2個相同的實(shí)數(shù)根3、當(dāng)△<0時,一元二次方程沒有實(shí)數(shù)根.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:

(1) 5(x8)=6(2x-7)5;

(2) 5-=x;

(3) =1;

(4) =1;

(5) 2x[x(x-1)]=( x-1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場銷售喜羊羊玩具,預(yù)測該產(chǎn)品能夠暢銷,就用32000元購進(jìn)了一批這種玩具,上市后很快脫銷,商場又用68000元購進(jìn)第二批這種玩具,所購數(shù)量是第一批購進(jìn)數(shù)量的2倍,但每個進(jìn)價多了10元.

(1)該商場兩次共購進(jìn)這種玩具多少個?

(2)如果這兩批玩具每套的售價相同,且全部售完后總利潤率不低于20%,那么每件售價至少是多少元?(利潤率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,已知線段ACy軸,點(diǎn)B在第一象限,且AO平分∠BAC,ABy軸于G,連接OB,OC.

(1)判斷△AOG的形狀,并予以證明;

(2)若點(diǎn)BC關(guān)于y軸對稱,求證:AOBO

(3)(2)的條件下,如圖②,點(diǎn)MOA上一點(diǎn),且∠ACM=45°,BMy軸于P,若點(diǎn)B的坐標(biāo)為(3,1),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B、C是圓O上的三點(diǎn),且四邊形ABCO是平行四邊形,OF⊥OA交圓O于點(diǎn)F,則∠CBF等于(
A.12.5°
B.15°
C.20°
D.22.5°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把正整數(shù)1,2,3,4,…,2 009排列成如圖所示的一個表.

(1)用一正方形在表中隨意框住4個數(shù),把其中最小的數(shù)記為x,另三個數(shù)用含x的式子表示出來,從小到大依次是__ __,__ __,__ __;

(2)在(1)前提下,當(dāng)被框住的4個數(shù)之和等于416時,x的值是多少?

(3)在(1)前提下,被框住的4個數(shù)之和能否等于622?如果能,請求出此時x的值;如果不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)三角形三個內(nèi)角的度數(shù)分別為x,y,z,如果其中一個角的度數(shù)是另一個角的度數(shù)的2倍,那么我們稱數(shù)對(y,z)(yz)x的和諧數(shù)對.例:當(dāng)x=150°時,對應(yīng)的和諧數(shù)對有一個,它為(10,20);當(dāng)x=66時,對應(yīng)的和諧數(shù)對有二個,它們?yōu)?/span>(33,81),(38,76).當(dāng)對應(yīng)的和諧數(shù)對(y,z)有三個時,此時x的取值范圍是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y= x的圖象如圖所示,則方程ax2+(b﹣ )x+c=0(a≠0)的根的情況(
A.兩根都大于0
B.兩根都等于0
C.兩根都小于0
D.一根大于0,一根小于0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知,,平分,即,平分,即;

,則________;

可以在內(nèi)部繞點(diǎn)作任意旋轉(zhuǎn)(射線與射線不重合,射線與射線不重合)則的大小是否改變?試說明理由.

查看答案和解析>>

同步練習(xí)冊答案