【題目】如圖,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若將三角形沿AD剪開(kāi)成為兩個(gè)三角形,在平面上把這兩個(gè)三角形拼成一個(gè)四邊形,你能拼出所有的不同形狀的四邊形嗎?畫(huà)出所拼四邊形的示意圖(標(biāo)出圖中的直角),并分別寫(xiě)出所拼四邊形的對(duì)角線(xiàn)的長(zhǎng).(只需寫(xiě)出結(jié)果即可)
【答案】略
【解析】
可讓兩斜邊重合,得到一個(gè)矩形和一個(gè)一般的四邊形,根據(jù)勾股定理和三角形的面積公式可求得對(duì)角線(xiàn)長(zhǎng);讓兩長(zhǎng)直角邊重合或兩短直角邊重合,可得到一個(gè)平行四邊形,利用勾股定理求得一對(duì)角線(xiàn)的長(zhǎng)。
圖1是矩形,兩條對(duì)角線(xiàn)長(zhǎng)相等,均為2;
圖2是平行四邊形,兩條對(duì)角線(xiàn)長(zhǎng)4和4;
圖3是平行四邊形,兩條對(duì)角線(xiàn)長(zhǎng)2和2;
圖4是一般的四邊形,兩條對(duì)角線(xiàn)長(zhǎng)2和。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)直角三角形的兩邊的長(zhǎng)是方程x2﹣7x+12=0的兩個(gè)根,則此直角三角形的斜邊中線(xiàn)長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.點(diǎn)P在線(xiàn)段AB上以1cm/s的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線(xiàn)段BD上由點(diǎn)B向點(diǎn)D運(yùn)動(dòng).它們運(yùn)動(dòng)的時(shí)間為t(s).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)t=1時(shí),△ACP與△BPQ是否全等,請(qǐng)說(shuō)明理由,并判斷此時(shí)線(xiàn)段PC和線(xiàn)段PQ的位置關(guān)系;
(2)如圖(2),將圖(1)中的“AC⊥AB,BD⊥AB”為改“∠CAB=∠DBA=60°”,其他條件不變.設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為x cm/s,是否存在實(shí)數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x、t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖①,已知:在△ABC中,∠BAC=90°,AB=AC,直線(xiàn)m經(jīng)過(guò)點(diǎn)A,BD⊥直線(xiàn)m, CE⊥直線(xiàn)m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2)如圖②,將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線(xiàn)m上,并且有∠BDA=∠AEC=∠BAC=α,其中α為任意鈍角.請(qǐng)問(wèn)結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,△ABC的邊AB在x軸上,∠ABC=90°,AB=BC,OA=1,OB=4,拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)A、C兩點(diǎn).
(1)求拋物線(xiàn)的解析式及其頂點(diǎn)坐標(biāo);
(2)如圖①,點(diǎn)P是拋物線(xiàn)上位于x軸下方的一點(diǎn),點(diǎn)Q與點(diǎn)P關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸對(duì)稱(chēng),過(guò)點(diǎn)P,Q分別向x軸作垂線(xiàn),垂足為點(diǎn)D,E,記矩形DPQE的周長(zhǎng)為d,求d的最大值,并求出使d最大值時(shí)點(diǎn)P的坐標(biāo);
(3)如圖②,點(diǎn)M是拋物線(xiàn)上位于直線(xiàn)AC下方的一點(diǎn),過(guò)點(diǎn)M作MF⊥AC于點(diǎn)F,連接MC,作MN∥BC交直線(xiàn)AC于點(diǎn)N,若MN將△MFC的面積分成2:3兩部分,請(qǐng)確定M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x+1與x、y 軸分別交于點(diǎn)A、B,在直線(xiàn) AB上截取BB1=AB,過(guò)點(diǎn)B1分別作x、y 軸的垂線(xiàn),垂足分別為點(diǎn)A1、C1,得到矩形OA1B1C1;在直線(xiàn) AB上截取B1B2= BB1,過(guò)點(diǎn)B2分別作x、y 軸的垂線(xiàn),垂足分別為點(diǎn)A2 、C2,得到矩形OA2B2C2;在直線(xiàn)AB上截取B2B3= B1B2,過(guò)點(diǎn)B3分別作x、y 軸的垂線(xiàn),垂足分別為點(diǎn)A3、C3,得到矩形OA3B3C3;……;
則點(diǎn)B1的坐標(biāo)是 ;第3個(gè)矩形OA3B3C3的面積是 ;
第n個(gè)矩形OAnBnCn的面積是 (用含n的式子表示,n是正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線(xiàn)l與⊙O,AB是⊙O的直徑,AD⊥l于點(diǎn)D.
(1)如圖①,當(dāng)直線(xiàn)l與⊙O相切于點(diǎn)C時(shí),求證:AC平分∠DAB;
(2)如圖②,當(dāng)直線(xiàn)l與⊙O相交于點(diǎn)E,F(xiàn)時(shí),求證:∠DAE=∠BAF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖∠BAC的角平分線(xiàn)與BC的垂直平分線(xiàn)DG交于點(diǎn)D,DE⊥AB,DF⊥AC,垂足分別為E,F.
⑴試說(shuō)明:BE=CF;
⑵若AF=3,BC=4,求△ABC的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次軍事演習(xí)中,藍(lán)方在﹣條東西走向的公路上的A處朝正南方向撤退,紅方在公路上的B處沿南偏西60°方向前進(jìn)實(shí)施攔截.紅方行駛2000米到達(dá)C后,因前方無(wú)法通行,紅方?jīng)Q定調(diào)整方向,再朝南偏西45°方向前進(jìn)了相同距離,剛好在D處成功攔截藍(lán)方.
(1)求點(diǎn)C到公路的距離;
(2)求紅藍(lán)雙方最初的距離.(結(jié)果保留根號(hào))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com