【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=x+1與x、y 軸分別交于點(diǎn)A、B,在直線 AB上截取BB1=AB,過點(diǎn)B1分別作x、y 軸的垂線,垂足分別為點(diǎn)A1、C1,得到矩形OA1B1C1;在直線 AB上截取B1B2= BB1,過點(diǎn)B2分別作x、y 軸的垂線,垂足分別為點(diǎn)A2 、C2,得到矩形OA2B2C2;在直線AB上截取B2B3= B1B2,過點(diǎn)B3分別作x、y 軸的垂線,垂足分別為點(diǎn)A3、C3,得到矩形OA3B3C3;……;
則點(diǎn)B1的坐標(biāo)是 ;第3個矩形OA3B3C3的面積是 ;
第n個矩形OAnBnCn的面積是 (用含n的式子表示,n是正整數(shù)).
【答案】(1,2), 12, n(n+1)
【解析】
先求出A、B兩點(diǎn)的坐標(biāo),再設(shè)B1(a,a+1),B2(b,b+1),B3(c,c+1),求出a、b、c的值,利用矩形面積公式求面積,找出規(guī)律即可得到答案.
∵一次函數(shù)y=x+1與x、y 軸分別交于點(diǎn)A、B,
∴A(-1,0),B(0,1),
∴AB=,
設(shè)B1(a,a+1),B2(b,b+1),B3(c,c+1),
∵BB1=AB,
∴a2+(a+1-1)2=2,解得a1=1,a2=-1(舍去),
∴B1(1,2),
同理可得,B2(2,3),B3(3,4),
∴=3×4=12,
∴ =n(n+1),
故答案為:(1,2),12,n(n+1).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校計劃購買籃球、排球共20個,購買2個籃球,3個排球,共需花費(fèi)190元;購買3個籃球的費(fèi)用與購買5個排球的費(fèi)用相同。
(1)籃球和排球的單價各是多少元?
(2)若購買籃球不少于8個,所需費(fèi)用總額不超過800元.請你求出滿足要求的所有購買方案,并直接寫出其中最省錢的購買方案
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為6的正三角形紙片按如下順序進(jìn)行兩次折疊,展開后,得折痕(如圖①),為其交點(diǎn).
(1)探求與的數(shù)量關(guān)系,并說明理由;
(2)如圖②,若分別為上的動點(diǎn).
①當(dāng)的長度取得最小值時,求的長度;
②如圖③,若點(diǎn)在線段上,,則的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x2+4x+5與x軸的兩個交點(diǎn)為A、B,與y軸交于點(diǎn)C.
(1)求A,B,C三點(diǎn)的坐標(biāo)?
(2)求該二次函數(shù)的對稱軸和頂點(diǎn)坐標(biāo)?
(3)若坐標(biāo)平面內(nèi)的點(diǎn)M,使得以點(diǎn)M和三點(diǎn)A,B,C為頂點(diǎn)的四邊形是平行四邊形,求點(diǎn)M的坐標(biāo)?(直接寫出M的坐標(biāo))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC,AD⊥BC于D,且AD=BC=4,若將三角形沿AD剪開成為兩個三角形,在平面上把這兩個三角形拼成一個四邊形,你能拼出所有的不同形狀的四邊形嗎?畫出所拼四邊形的示意圖(標(biāo)出圖中的直角),并分別寫出所拼四邊形的對角線的長.(只需寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定△ABC≌△ADC的是( 。
A. CB=CD B. ∠BAC=∠DAC C. ∠BCA=∠DCA D. ∠B=∠D=90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+bx+c的圖象如圖所示,它與x軸的一個交點(diǎn)坐標(biāo)為(﹣1,0),與y軸的交點(diǎn)坐標(biāo)為(0,3).
(1)求出b、c的值,并寫出此二次函數(shù)的解析式;
(2)根據(jù)圖象,直接寫出函數(shù)值y為正數(shù)時,自變量x的取值范圍;
(3)當(dāng)2≤x≤4時,求y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將半徑為3cm,圓心角為60°的扇形紙片.AOB在直線l上向右作無滑動的滾動至扇形A′O′B′處,則頂點(diǎn)O經(jīng)過的路線總長 cm(結(jié)果保留π).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
學(xué)習(xí)了無理數(shù)后,小航用這樣的方法估算的近似值:
由于,不妨設(shè)(),
所以,可得.
由可知,所以,
解得 , 則 .
依照小航的方法解決下列問題:
(1)估算的值.
(2)已知非負(fù)整數(shù)、、,若,且,則 .(用含、的代數(shù)式表示)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com