【題目】某工程對(duì)承接了60萬平方米的綠化工程,由于情況有變,……,設(shè)原計(jì)劃每天綠化的面積為萬平方米,列方程為,根據(jù)方程可知省略的部分是( )

A.實(shí)際工作時(shí)每天的工作效率比原計(jì)劃提高了20%,結(jié)果提前30天完成了這一任務(wù)

B.實(shí)際工作時(shí)每天的工作效率比原計(jì)劃提高了20%,結(jié)果延誤30天完成了這一任務(wù)

C.實(shí)際工作時(shí)每天的工作效率比原計(jì)劃降低了20%,結(jié)果延誤30天完成了這一任務(wù)

D.實(shí)際工作時(shí)每天的工作效率比原計(jì)劃降低了20%,結(jié)果提前30天完成了這一任務(wù)

【答案】A

【解析】

根據(jù)工作時(shí)間=工作總量÷工作效率結(jié)合所列分式方程,即可找出省略的條件,此題得解.

解:設(shè)原計(jì)劃每天綠化的面積為x萬平方米,

∵所列分式方程是,

為實(shí)際工作時(shí)間,為原計(jì)劃工作時(shí)間,

∴省略的條件為:實(shí)際工作時(shí)每天的工作效率比原計(jì)劃提高了20%,結(jié)果提前30天完成了這一任務(wù).

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列命題中:(1)拋物線y2x326頂點(diǎn)坐標(biāo)是(3,﹣6);(2)一元二次方程x22x+0的兩根之和等于2;(3)已知拋物線yax2+bx+ca0)的對(duì)稱軸為x=﹣2,與x軸的一個(gè)交點(diǎn)為(2,0).若關(guān)于x的一元二次方程ax2+bx+cpp0)有整數(shù)根,則p的值有4個(gè);(4)二次函數(shù)y=﹣x22x+c在﹣3≤x≤2的范圍內(nèi)有最小值﹣5,則c的值是﹣2.其中正確結(jié)論的個(gè)數(shù)是( 。

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,矩形ABCD中,AD6DC7,菱形EFGH的三個(gè)頂點(diǎn)EG,H分別在矩形ABCD的邊ABCD,DA上,AH2,連接CF

1)若DG2,求證四邊形EFGH為正方形;

2)若DG6,求FCG的面積;

3)當(dāng)DG為何值時(shí),FCG的面積最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了計(jì)算湖中小島上涼亭P到岸邊公路l的距離,某數(shù)學(xué)興趣小組在公路l上的點(diǎn)A處,測(cè)得涼亭P在北偏東60°的方向上;從A處向正東方向行走200米,到達(dá)公路l上的點(diǎn)B處,再次測(cè)得涼亭P在北偏東45°的方向上,如圖所示.求涼亭P到公路l的距離.(結(jié)果保留整數(shù),參考數(shù)據(jù):≈1.414,≈1.732)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某中學(xué)九年級(jí)數(shù)學(xué)活動(dòng)小組選定測(cè)量學(xué)校前面小河對(duì)岸大樹BC的高度,他們?cè)谛逼律?/span>D處測(cè)得大樹頂端B的仰角是30°,朝大樹方向下坡走6米到達(dá)坡底A處,在A處測(cè)得大樹頂端B的仰角是48°.若斜坡FA的坡比i1,求大樹的高度.(結(jié)果保留一位小數(shù))參考數(shù)據(jù):sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,1.73

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,頂點(diǎn)分別在坐標(biāo)軸的正半軸上, ,點(diǎn)在直線,直線與折線有公共點(diǎn).

1)點(diǎn)的坐標(biāo)是

2)若直線經(jīng)過點(diǎn),求直線的解析式;

3)對(duì)于一次函數(shù),當(dāng)的增大而減小時(shí),直接寫出的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y1x2+bx+c與直線y22x+m相交于A14)、B(﹣1,n)兩點(diǎn).

1)求y1y2的解析式;

2)直接寫出y1y2的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線的圖象過點(diǎn).

1)求拋物線的解析式;

2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使得△PAC的周長(zhǎng)最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo)及△PAC的周長(zhǎng);若不存在,請(qǐng)說明理由;

3)在(2)的條件下,在x軸上方的拋物線上是否存在點(diǎn)M(不與C點(diǎn)重合),使得?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)為1,格點(diǎn)△ABC(頂點(diǎn)在網(wǎng)格線的交點(diǎn)上)的頂點(diǎn)A、C的坐標(biāo)分別為A(﹣35)、C03).

1)請(qǐng)?jiān)诰W(wǎng)格所在的平面內(nèi)畫出平面直角坐標(biāo)系,并寫出點(diǎn)B的坐標(biāo).

2)將△ABC繞著原點(diǎn)順時(shí)針旋轉(zhuǎn)90°得△A1B1C1,畫出△A1B1C1

3)在直線y1上存在一點(diǎn)P,使PA+PC的值最小,請(qǐng)直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案