如圖,在平面直角坐標系xOy中,Rt△ABC的A、B兩個頂點在x軸上,頂點C在y軸的負半軸上.已知OA=4OB,AC=2BC=數(shù)學(xué)公式
(1)求點A、B、C的坐標;
(2)若點C關(guān)于原點的對稱點為C′,試問在AB的垂直平分線上是否存在一點G,使得△GBC′的周長最。咳舸嬖,求出點G的坐標和最小周長;若不存在,請說明理由.
(3)設(shè)點P是直線BC上異于點B、點C的一個動點,過點P作x軸的平行線交直線AC于點Q,過點Q作QM垂直于x軸于點M,再過點P作PN垂直于x軸于點N,得到矩形PQMN.則在點P的運動過程中,當矩形PQMN為正方形時,求該正方形的邊長.

解:(1)設(shè)OB=k(k>0),則OA=4k,AB=5k,
∵AC=2BC=2,∠ACB=90°,
∴(22+(2=(5k)2,
解得:k=1,
∴OB=1,OA=4,
∴A(-4,0),B(1,0),
∵OC==2,
∴C(0,-2);

(2)如圖1,連接AC′,由幾何知識知AC′與AB的垂直平分線l的交點即為△GBC′的周長最小時的點G.
連接GB,BC′,
∵點C′與點C關(guān)于原點對稱,且C(0,-2),
∴C′(0,2),
∵A(-4,0),B(1,0),
∴直線AC′的解析式為:y=x+2,
直線l的解析式為:x=-,
∴點G(-,),
∵BC′==,AC′==2
∴△GBC′的最小周長為:
GB+GC′+BC′=AC′+BC′=3;

(3)由圖易知點P不可能在直線BC的點B右上方.
當點P在線段BC之間時(如圖2),
設(shè)正方形PQMN的邊長為t.
∵A(-4,0),B(1,0),C(0,-2)
∴直線AC的解析式為:y=-x-2,
直線BC的解析式為:y=2x-2,
∴點P(,-t),點Q(2t-4,-t),
∴點N(,0),點M(2t-4,0),
∴MN=-2t+4+=t,解得t=,
當點P在直線BC的左下方時,同理可得點N(,0),點M(2t-4,0),此時
MN=2t-4-=t,解得t=
綜上所述,正方形PQMN的邊長為
分析:(1)設(shè)OB=k(k>0),則OA=4k,AB=5k,在Rt△ABC中利用勾股定理可求出k的值,故可得出A、B、C三點的坐標;
(2)連接AC′,由幾何知識知AC′與AB的垂直平分線l的交點即為△GBC′的周長最小時的點G.連接GB,BC′,根據(jù)點C′與點C關(guān)于原點對稱,且C(0,-2),可求出C′(0,2),利用待定系數(shù)法求出直線AC′的解析式故可求出G點坐標,進而可得出結(jié)論;
(3)由圖易知點P不可能在直線BC的點B右上方.當點P在線段BC之間時(如圖2),設(shè)正方形PQMN的邊長為t,求出直線AC的解析式,由正方形的性質(zhì)可求出P、Q、M、N點的坐標,故可得出MN的長;同理當點P在直線BC的左下方時可求出MN的長.
點評:本題考查的是一次函數(shù)綜合題,涉及到勾股定理、用待定系數(shù)法求一次函數(shù)的解析式及正方形的性質(zhì)等知識,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案