如圖,AB切⊙O于點(diǎn)B,∠A=30°,AB=2
3
,則半徑OB的長(zhǎng)為( 。
A.1B.
3
C.2D.4

∵直線AB與⊙O相切于點(diǎn)A,
則∠OBA=90°.
∵AB=2
3

∴tanA=
OB
AB
=
3
3
,
∴OB=2
3
×
3
3
=2.
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,C是⊙O上一點(diǎn),∠CAB=30°,在AB的延長(zhǎng)線上取一點(diǎn)P,使得PB=
1
2
AB,試判斷直線PC與⊙O的位置關(guān)系,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知PA、PB切⊙O于A、B兩點(diǎn),連AB,且PA,PB的長(zhǎng)是方程x2-2mx+3=0的兩根,AB=m.試求:
(1)⊙O的半徑;
(2)由PA,PB,
AB
圍成圖形(即陰影部分)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,AB是⊙O的直徑,BC⊥AB于點(diǎn)B,連接OC交⊙O于點(diǎn)E,弦ADOC,弦DF⊥AB于點(diǎn)G.
(1)求證:點(diǎn)E是
BD
的中點(diǎn);
(2)求證:CD是⊙O的切線;
(3)若sin∠BAD=
4
5
,⊙O的半徑為5,求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,在△ABC中,已知AB=5,BC=8,AC=7,動(dòng)點(diǎn)P、Q分別在邊AB、AC上,使△APQ的外接圓與BC相切,則線段PQ的最小值等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,AB、CD是⊙O的兩條平行弦,BEAC交CD于E,過(guò)A點(diǎn)的切線交DC延長(zhǎng)線于P,若AC=3
2
,則PC•CE的值是( 。
A.18B.6C.6
2
D.9
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知:如圖,在△ABC中,BC=AC,以BC為直徑的⊙O與邊AB相交于點(diǎn)D,DE⊥AC,垂足為點(diǎn)E.
(1)求證:點(diǎn)D是AB的中點(diǎn);
(2)證明:DE是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

有人請(qǐng)?zhí)┛说靥汗緸槟承陆C(jī)場(chǎng)的環(huán)形通道鋪設(shè)地毯.當(dāng)泰克先生拿到計(jì)劃藍(lán)圖(如圖)時(shí),他有些生氣:與內(nèi)圓相切的一條弦的長(zhǎng)度是唯一給出的尺寸數(shù)據(jù).“這就難了,”泰克想,“兩圓之間環(huán)形陰影的面積不知道,怎么能估計(jì)出大致需要多少地毯呢?最好去找找設(shè)計(jì)師薩普先生.”薩普先生是個(gè)優(yōu)秀的幾何學(xué)家,他對(duì)此倒是處之泰然:“對(duì)我來(lái)說(shuō),有這一個(gè)數(shù)據(jù)就夠了,把這個(gè)數(shù)據(jù)代入公式就能求出圓環(huán)的面積.”泰克先生吃了一驚,略一思索,便現(xiàn)出了笑容:“謝謝你,薩普先生,無(wú)須勞駕你動(dòng)用什么公式了,我可以馬上得出答案.”你知道泰克先生是怎么算的嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,PA、PB分別切⊙O于點(diǎn)A、B,若∠P=70°,則∠C的大小為_(kāi)_____(度).

查看答案和解析>>

同步練習(xí)冊(cè)答案