【題目】如圖所示的坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)的坐標(biāo)依次為A(﹣1,2),B(﹣4,1),C(﹣2,﹣2).

1)請(qǐng)?jiān)谶@個(gè)坐標(biāo)系中作出ABC關(guān)于y軸對(duì)稱的A1B1C1

2)分別寫出點(diǎn)A1、B1C1的坐標(biāo).

3)求A1B1C1的面積.

【答案】1)如圖所示,A1B1C1即為所求;(2A1的坐標(biāo)為(1,2)、B1的坐標(biāo)(4,1)、C1的坐標(biāo)為(2,﹣2);(3A1B1C1的面積為.

【解析】

1)分別作出點(diǎn)AB,C關(guān)于y軸的對(duì)稱點(diǎn),再首尾順次連接即可得;

2)由(1)中所作圖形可得答案;

3)利用割補(bǔ)法求解可得.

1)如圖所示,A1B1C1即為所求.

2)由圖知,A1的坐標(biāo)為(12)、B1的坐標(biāo)為(4,1)、C1的坐標(biāo)為(2,﹣2);

(3)A1B1C1的面積為3×4﹣×1×4﹣×1×3﹣×2×3=.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BD垂直平分線段AC,∠BCD=∠ADF,AF⊥AC

(1)證明:四邊形ABDF是平行四邊形;
(2)若AF=DF=5,AD=6,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,A、B、C分別為數(shù)軸上的三點(diǎn),A點(diǎn)對(duì)應(yīng)的數(shù)為60,B點(diǎn)在A點(diǎn)的左側(cè),并且與A點(diǎn)的距離為30,C點(diǎn)在B點(diǎn)左側(cè),C點(diǎn)到A點(diǎn)距離是B點(diǎn)到A點(diǎn)距離的4倍.

(1)求出數(shù)軸上B點(diǎn)對(duì)應(yīng)的數(shù)及AC的距離.

(2)點(diǎn)P從A點(diǎn)出發(fā),以3單位/秒的速度向終點(diǎn)C運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.

①當(dāng)P點(diǎn)在AB之間運(yùn)動(dòng)時(shí),則BP=   .(用含t的代數(shù)式表示)

②P點(diǎn)自A點(diǎn)向C點(diǎn)運(yùn)動(dòng)過程中,何時(shí)P,A,B三點(diǎn)中其中一個(gè)點(diǎn)是另外兩個(gè)點(diǎn)的中點(diǎn)?求出相應(yīng)的時(shí)間t.

③當(dāng)P點(diǎn)運(yùn)動(dòng)到B點(diǎn)時(shí),另一點(diǎn)Q以5單位/秒的速度從A點(diǎn)出發(fā),也向C點(diǎn)運(yùn)動(dòng),點(diǎn)Q到達(dá)C點(diǎn)后立即原速返回到A點(diǎn),那么Q點(diǎn)在往返過程中與P點(diǎn)相遇幾次?直.接.寫.出.相遇時(shí)P點(diǎn)在數(shù)軸上對(duì)應(yīng)的數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,PAD邊上一點(diǎn),沿直線BP將△ABP翻折至△EBP(點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)E),PECD相交于點(diǎn)O,且OE=OD.

(1)求證:PE=DH;

(2)若AB=10,BC=8,求DP的長(zhǎng).

【答案】1見解析;2

【解析】試題分析:(1) 先證明DOP≌△EOH,再利用等量代換得到PE=DH.

(2) 設(shè)DP=x, RtBCH中,先用 x表示三角形三邊,利用勾股定理列式解方程.

試題解析:

1)解:證明:OD=OE,D=∠E=90°,DOP=∠EOH,

∴△DOP≌△EOH,

OP=OH,

PO+OE=OH+OD,

PE=DH.

2)解:設(shè)DP=x,則EH=x,BH=10﹣x,

CH=CDDH=CDPE=10﹣8﹣x=2+x,

Rt△BCH中,BC2+CH2=BH2

2+x2+82=10﹣x2,

x=,

DP=

型】解答
結(jié)束】
25

【題目】某文教店老板到批發(fā)市場(chǎng)選購(gòu)A,B兩種品牌的繪圖工具套裝,每套A品牌套裝進(jìn)價(jià)比B品牌每套套裝進(jìn)價(jià)多2.5元,已知用200元購(gòu)進(jìn)A種套裝的數(shù)量是用75元購(gòu)進(jìn)B種套裝數(shù)量的2倍.

(1)求A,B兩種品牌套裝每套進(jìn)價(jià)分別為多少元?

(2)若A品牌套裝每套售價(jià)為13元,B品牌套裝每套售價(jià)為9.5元,店老板決定,購(gòu)進(jìn)B品牌的數(shù)量比購(gòu)進(jìn)A品牌的數(shù)量的2倍還多4套,兩種工具套裝全部售出后,要使總的獲利超過120元,則最少購(gòu)進(jìn)A品牌工具套裝多少套?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ADBC,ABCD,E在線段BC延長(zhǎng)線上,AE平分∠BAD.連接DE,若∠ADE3CDE,∠AED60°.

1)求證:∠ABC=∠ADC;

2)求∠CDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A0,4),B2,4),C3,﹣1).

1)試在平面直角坐標(biāo)系中,標(biāo)出AB、C三點(diǎn);

2)求ABC的面積.

3)若A1B1C1ABC關(guān)于x軸對(duì)稱,寫出A1、B1、C1的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ABDF,D+B=180°,

1)求證:DEBC;

2)如果∠AMD=75°,求∠AGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中的位置如圖所示.

1)分別寫出各點(diǎn)的坐標(biāo):___________,_________,_______________

2是由經(jīng)過怎樣的平移變換得到的?答:___________________

3)若點(diǎn)內(nèi)部一點(diǎn),則內(nèi)部的對(duì)應(yīng)點(diǎn)的坐標(biāo)為___________

4)求的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點(diǎn),點(diǎn)A在x軸的正半軸上,點(diǎn)C在y軸的正半軸上,OA=5,OC=4.

(1)在OC邊上取一點(diǎn)D,將紙片沿AD翻折,使點(diǎn)O落在BC邊上的點(diǎn)E處,則D點(diǎn)的坐標(biāo);E點(diǎn)的坐標(biāo)
(2)如圖②,若AE上有一動(dòng)點(diǎn)P(不與A、E重合)自A點(diǎn)沿AE方向向E點(diǎn)勻速運(yùn)動(dòng),運(yùn)動(dòng)的速度為每秒1個(gè)單位長(zhǎng)度,設(shè)運(yùn)動(dòng)的時(shí)間為t秒(0<t<5),過P點(diǎn)作ED的平行線交AD于點(diǎn)M,過點(diǎn)M作AE的平行線交DE于點(diǎn)N.求四邊形PMNE的面積S與時(shí)間t之間的函數(shù)關(guān)系式;t取何值時(shí),S有最大值,最大值是多少?
(3)在(2)的條件下,當(dāng)t為何值時(shí),以A、M、E為頂點(diǎn)的三角形為等腰三角形,并求出相應(yīng)時(shí)刻點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案